Structural Engineering Library

Version 5.8
by Michael D. Brooks, S.E., P.E.

A product of
ENERCALC, INC.

ENERCALC

©1983-2003 ENERCALC Engineering Software

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Publisher

ENERCALC, INC. \square

Managing Editor

ENERCALC Engineering Software

Michael D. Brooks, S.E., P.E.
Post Office Box 188
Corona del Mar, CA 92625
(949) 645-0151
(800) 424-2252

Fax: (949) 645-3881
Technical Services: (949) 645-0441
Sales: info@enercalc.com
Tech Support : support@enercalc.com
Web : www.enercalc.com

Table of Contents

Foreword 1
Part I Welcome 5
Part II Concrete Design Modules 8
1 Multi Span Concrete Beam 10
2 Concrete Beam. 23
3 Rectangular Column 41
4 Circular Column 55
5 Tilt-Up Wall Panel 70
6 Shear Wall 90
7 Square Footing 109
8 General Footing 120
9 Combined Footing 133
10 Rebar Embedment Length. 148
Part III Masonry Design Modules 156
1 Masonry Wall 157
2 Slender Wall. 170
3 Masonry Column 186
4 Flush Wall Pilaster 197
5 Shear Piers. 213
6 Masonry Lintel 224
Part IV Retaining Wall Design Modules 240
1 Cantilevered Wall 240
2 Restrained Wall 267
3 Tapered Stem Wall 293

Foreword

This software system was designed and developed to give the practicing Structural Engineer a tool to rapidly perform structural analysis and design of building components.

The design philosophy has remained the same for the last 20 years......provide software that is a "fill-in'the-blanks" tool with instant recalculation and review of the results.

We thank the thousands of engineers who have purchased ENERCALC software over the last two decades helping this software develop to where it is today.

1 Welcome

Welcome To The Structural Engineering Library

You've chosen one of the most respected Structural Engineering software packages available today. In continuous development since 1983, Version 5.8 is the culmination of years of development and refinement from suggestions of engineers worldwide.

This document provides detailed documentation for all the modules contained in Vesion 5.8 of the Structural Engineering Library.

Please refer to Volume I for general information including licensing, installation, usage isntructions, and a sample session.

2 Concrete Design Modules

The programs in this section provide analysis and design for structural elements made of concrete.

Code References

Program modules for CONCRETE design are designed to be in conformance with the ACI 318-02 Edition. Concrete design is performed using "Ultimate Strength" analysis \& design procedures using factored loads and reduced allowable capacities.

- Design procedures for concrete design follow ACI 318-02.
- IBC 2003 Section 1901.2 references ACI 318 for the design of concrete.
- 1997 UBC Chapter 19 Division II references ACI-318 for the design of concrete.
- 2003 NFPA 5000 Section 35.2.7.2 references ACI-318 for the design of concrete.
- Load combinations are according to ACI 318-02 Section C. 2

Multi Span Concrete Beam

Multi Span Concrete Beam allows design of up to eight spans on one calculation sheet. Two modes are available; all spans can be simply supported with optional cantilevers or all are continuous with optional cantilevers and end fixities (pin,fix,free). Dead, live, and short term point, moment, and uniform/trapezoidal loads in any combination may be applied. Alternate span live loading is easily defined, and you can specify top \& bottom reinforcing at left, center, and right positions for each span. Actual and allowable moments and shears, reactions, deflections, and shear stirrup spacings at sixth points along each span are given.

Rectangular Concrete Beam Design

Rectangular Concrete Beam Design provides more detailed and flexible design options for both rectangular and tee shaped beams. Items available for user input are seismic/wind factors, dead, live, and short term loads, a flange on one or both sides, effective slab width, stirrup size, live/short term load combinations, and fixed or pinned end combinations. The center, left, and right sides of the beam can have two rebar sets for both tension and compression reinforcing. Providing detailed strain analysis results to verify moment capacities and shear stirrup spacing requirements at $1 / 7$ points along the beam.

Rectangular Concrete Column

Rectangular Concrete Column determines allowable axial capacities for columns subjected to dead, live, and short term axial loads with bending about one axis. Items considered are unbraced lengths, side sway, effective length factors, and applied point, uniform, and moment loads. Slenderness is evaluated and the necessary moment magnification factors applied to the maximum resultant eccentricities. Reinforcing can be specified in up to five
layer locations, and an exact section analysis based upon internal strains is performed to determine allowable capacity for ACI load combinations 9-1, 9-2 and 9-3.

Circular Concrete Column

Circular Concrete Column determines allowable axial capacities for columns subjected to dead, live, and short term axial loads with bending about one axis. Items considered are unbraced lengths, side sway, effective length factors, and applied point, uniform, and moment loads. Slenderness is evaluated and the necessary moment magnification factors applied to the maximum resultant eccentricities.

Multi Story Shear Wall

Multi Story Shear Wall allows the user to specify a single wall up to five stories high, each portion with different lengths, thicknesses, and materials. Ten lateral and ten vertical dead, live, and short term point loads can be entered, along with lateral weight factors, concrete weight, live/short term combinations, and minimum reinforcing. Total shear, moment, and reinforcing requirements are given for each level with short term loads applied in each direction. A complete footing design is also provided.

Tilt-Up Wall Panel

Tilt-Up Wall Panel gives you extensive analysis capabilities for this popular construction method. You may choose between five common analysis methods which consider deflections, moments, and P-Delta effects. You may apply concentrated or partial length lateral loads to design jambs at openings, and include the effect of negative parapet moment, any degree of base fixity (for dock high walls), and eccentric and concentric vertical loads. The program performs factored and service load calculations to find maximum moments and deflections for any design method. All methods consider P-Delta effects, give detailed section property and cracking data, and give simultaneous analysis results for seismic and wind loading's.

Square Footing Pad Design

Square Footing Pad Design is a workhorse program that provides design for up to six footing per sheet. In addition to dead, live, and short term loads, you may enter seismic zone, overburden, and column size (for 2-way shear). Soil bearing increases for short term loads and for greater depth and width can also be used. Each footing is designed for moment, one-way shear, and punching shear. Reinforcing options for \#4 through \#10 bars are listed.

General Footing Design

General Footing Design provides detailed uniaxial and biaxial analysis of general rectangular concrete footings. Dead, live, and short term non-concentric axial loads, moments, and shears can be applied about each axis. Short term soil pressure increases, overburden, and column dimensions can be entered. Each recalculation solves for static and short term soil pressures, stability ratios, and factored load moments, one-way shear, and punching shear. The biaxial analysis uses skew bending theory correlated with Esling's studies for pressure under non-tensile sections.

Combined Footing Design

Combined Footing Design allows two independent columns to apply axial, shear and moment loading's along the center line of a rectangular footing. Each column has its own dead, live, and short term load, dimensions, and location. The footing may also have applied overburden, duration of load factor, minimum steel, and seismic/wind factors. Each recalculation evaluates static and short term service soil pressure, stability ratios, factored load moments, one-way shear, punching shear, and reinforcing requirements for all ACI load combinations.

Rebar Embedment length Calculation

Rebar Embedment length calculates the required straight tension, straight compression, and hooked embedment length requirements for reinforcing steel in concrete using the various modification factors allowed by ACI 318-02.

2.1 Multi Span Concrete Beam

This program provides analysis of simple span or continuous concrete beams. The program allows you to design concrete beams in production line form, letting you rapidly complete many designs simultaneously. The program can handle up to eight spans at once. The end fixities of each can easily be modified to model many types of beams, including (but not limited to):

- Simple span beams with cantilevers at one or both ends.
- Single span beams with fixed and/or free ends.
- Continuous beams with up to nine supports.
- Continuous beams with one or both ends pinned, fixed, or cantilevered.

This flexibility is provided by allowing you to:

- Set a flag telling the program to either consider all beams that have pinned ends to be continuous over the support (hooked to the adjacent beam) or consider each span as simply supported.
- For each beam, you can specify fixed, pinned, or free support conditions for each end. This allows you to model any type of span support condition you will encounter (limited to eight spans/nine supports).
- Each span can be loaded with a uniform load, a partial length uniform load, partial length trapezoidal load, up to four point loads, and one concentrated moment. All of these loads can have dead and live components. To further aid your designing ability, you can easily cancel the inclusion of live loads on any span, to perform alternate span load analysis.
- Each span can have top and bottom reinforcing placed at the center and at each end. Shear stirrup spacing is also given for six locations on each span. For each span, the program determines maximum center and support moments, shears, reactions and deflections.

Multi-Span Concrete Beam

Basic Usage

- Review Scope of Design/Analysis Task. It is essential that you fully understand the use of this program, since its flexibility is the key to your rapid design of multi-span concrete members. Remember that each worksheet column represents a single span between two supports, regardless of the end support conditions. When cantilevers are used, they are considered a span, even though one end is free.
- After you've reviewed the beams you wish to design and how they will be entered using the programs All Spans Continuous and end fixity flags, enter this information in the top section of the worksheet. Remember, when you recalculate the worksheet later to get the results, you can always revise the support fixity data to change any mistakes you might have made.
- You can apply up to three distributed loads to each span. Although three loads total are allowed, the input for each is somewhat different. The UNIFORM item applies dead and live loads to the full span. The FIRST DISTRIBUTED load applies a uniform magnitude dead and live load over all or a portion of the span. The SECOND DISTRIBUTED load allows you to specify a trapezoidal load to any portion of the span.
- Point and moment dead and live loads can be applied anywhere on each span. Loads with negative X -distances, or distances that are longer than the span are ignored.
- Modify beam sizes \& reinforcing. To refine your design, type in new beam sizes, and review the stresses and deflections.

Unique Features

- A simple flag can be set on any span to ignore all live loads on that span, making alternate span loading analysis easy.
- Very flexible loadings may be applied to each span, including three uniform/partial/trapezoidal loads.

Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.

Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

General Tab

Operating Mode

This item plays a critical role in governing the calculation procedure for the entire program.

- Spans Considered Continuous Over Support : When two beams share the same support, and the support fixity for both beams at that support is Pinned, then the two beams are tied together to form one continuous beam over that support.
- All Spans Considered as Individual Beams : When two beams share the same support , they are always considered as two separate beams and the stresses and rotations in one never affect the other.

Within each beam span information tab there is a setting for end fixity. Here is how those end fixities are described according to the selection for this item:

When "All Spans Considered as Individual Beams" is chosen:

- Free will indicate that the end is completely free of the support and adjacent beam.
- Pinned will affect the beam according to the end fixity of the adjacent beam. If the adjacent beam end is Fixed or Free, then the beam will be pinned and not affected by the adjacent beam. If the adjacent beam is pinned, the two beams are locked together, forming one beam continuous over the support.
- Fixed will attach the beam end to a rigid boundary element, allowing no rotation or vertical movement, and not linked to the adjacent beam.

When "Spans Considered Continuous Over Support" is chosen :

- Free will indicate that the end is completely free of the support, allowing translation and rotation.
- Pinned will allow the beam end to rotate but not translate.
- Fixed will attach the beam end to a rigid boundary element, allowing no rotation or vertical movement.

Fy
Yield strength of reinforcing steel.
f'c
Compressive strength of concrete.

Stirrup Fy

Yield strength for the stirrup to be designed.

ACI Dead Load Factor

Load factor to be applied to entered dead loads for calculating ultimate moments \& shears.

ACI Live Load Factor

Load factor to be applied to entered live loads for calculating ultimate moments \& shears.

Typical Span Tab: \#1 to \#8

Each tab that shows \#1 through \#8 specifies information for one of the beams of the multi-span beam. Tab \#1 is the left-most beam and you work to the right to define additional adjacent spans.

Span Description

Enter a brief description of this span. Leaving it blank is fine.

Span

This equals the span distance of a beam segment.

Beam Depth

Enter the beam depth for this span. Typically this depth will be the same for all spans when designing a beam continuous over several spans.

Beam Width

Enter the beam width for this span. Typically this depth will be the same for all spans when designing a beam continuous over several spans.

Left Fixity, Right Fixity

Specifies how the ends of the beam will be restrained.

Reinforcing

Here you enter the reinforcing area and "d" distance from the TOP OF THE BEAM to the C.G. of the reinforcing. Because of space limitations on this tab you need to enter the reinforcing area. You can use the build-in Rebar Area Calculator by pressing the "Tools \& Settings" button at the top of the screen, select "Databases" from the pop-up menu, then select "Rebar". It will display the following window:

Rebar Section Database

Using this window you can create lists of rebar size \& quantity, select a range of sizes to list, and sort the resulting list by Area, Quantity, or Bar Size. This will let you easily create bar set designs as you refine your design.

Apply Live Load This Span?

This entry controls whether or not the live load entered for the span will be used or ignored. A YES/NO entry here gives you a simple way to try various live load alternates to determine maximum moments and shears on multi-span beams.

Applied Loads Tab

Uniform

Uniform dead and live load applied to the entire length of the center span. You should be aware that beam weight is not considered in the program, therefore this input should include allowance for beam weight. These values may be positive or negative.

Partial Length Distributed

Uniform dead and live load applied over a full or partial length of the center span. X-Left indicates the distance from the left support to the beginning of the load, and X-Right is the distance from the left support to the right end of the load. These values may be positive or negative.

Trapezoidal Distributed

Uniform or varying dead and live load applied over a full or partial length of the center span. DL/LL @ Left indicates the dead or live load magnitude at the X-Left distance location. DL/LL @ Right indicates the dead or live load magnitude at the X-Right distance location. These values may be positive,
negative, or both. X-Left indicates the distance from the left support to the beginning of the load, and X-Right is the distance from the left support to the right end of the load.

Point Load

Concentrated dead and live load applied to the beam.

Moment

Dead and live moment applied to the beam.

Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

Results Tab

Mu @ Left, Center, \& Right

This is the maximum moment calculated between the supports and at the cantilevers. Since only dead and live loads can be applied, this moment represents only ACI load combination 9-1.

Mn * Phi @ Left, Center, \& Right

This is the allowable moment capacity of the beam at the left, center, and right end, considering beam size and positive and negative reinforcing, multiplied by 0.9.
The user must determine the extent to which each set of reinforcing bars must extend past the point of maximum moment.

Shear @ Supports

The factored load shears are given for each end of the beam.

Reactions

The end reactions are calculated using the specified loading, spans, end fixities, and moment distribution results.

Maximum Deflection @ Mid-Span

Using the applied loads, support fixities, and moment distributions results; the resulting deflection curve at 250 points along the beam is searched for the maximum deflection and location. This is the Maximum deflection magnitude, considering both upward and downward displacements. I-effective is determined using ACI equation 9-7 is used.

Effective Stirrup Rebar Area

Enter the area for each stirrup. This area will be used to calculate the required stirrup spacing in the section below. For example, if you are using \# 3 stirrups, enter 2 * . $11=0.22$ in2.

Stirrup Spacing List

This area displays the minimum required shear stirrup spacing for six equal length zones along the beam span length. When 999" appears on-screen, that indicates that stirrups are not required.

Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.

Diagrams Tab

This displays a moment, shear, and deflection diagram for the beam with the applied loads and end conditions. Note the two tabs...."Graphic Diagram" and "Data Table". The Data Table tab provides the entire internal analysis at the $1 / 500$ th points within the beam.

Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".

Sample Printout

ENERCALC Engineering Software
P.O. Box 188

Title: ENERCALC Example Probiems Job \# $97-000001$
Corona del Mar, CA 92660
Voice: 949-645-0151
Dsgnr: MDB Date 10:37PM, 26 OCT 03
Description : Collection of exanple problems
www.enercalc.com

Eave Squan (c) 1893.2003 ExEFicalc Exineering Sotvas	Multi-Span Concrete Beam	Page 1 ebersiexanpleseev:Conerte caies

Description 3 Span System, 2 Load Patterns

ERCALC Engineering Software	Titte: ENERCALC Example Problems Job \# 97-000001
P.O. Box 188	Dsgnnr. MDB Date: 10:37PM, 26 OCT 03
Corona del Mar, CA 92660	Description : Collection of example problems
Voice: 949-645-0151	Scope: All programs in the Structural Engineening Library

www.enercalc.com

Description 3 Span System, 2 Load Patterns

Reactions \& Deflections							
DL@ Left	k	0.00	89.11	62.51	0.00	0.00	38.42
LL@ Left	k	000	25.88	40.37	0.00	0.00	31.34
Total @ Left	k	0.00	114.99	102.88	0.00	0.00	69.76
DL(g) Right	k	89.11	62.51	40.42	17.40	0.00	37.28
LL@ Right	k	25.88	40.37	-6.75	11.60	0.00	30.46
Total (G) Right	k	114.99	102.88	33.67	29.00	0.00	67.74
Max. Deflection	in	0.083	-0.493	-0.286	0.000	0.000	-0.819
(Q) $\mathrm{X}=$	ft	0.00	17.73	19.13	0.00	0.00	17.50
Inertia: Efrective	in4	0.00	23,127.91	12,34939	0.00	0.00	11,584.75
Shear Stirrups							
Stirrup Rebar Area Spacing@ Lett	in2 in	$\begin{array}{r} 0.600 \\ \text { Not Requd } \end{array}$	$\begin{aligned} & 0.600 \\ & 12.89 \end{aligned}$	0.600 14.50	$\begin{array}{r} 0.600 \\ \text { Not Req'd } \end{array}$	0.000 0.00	$\begin{aligned} & 0.600 \\ & 12.59 \end{aligned}$
Spacing@ $2^{\text {² }}$ L	in	Not Reqd	14.50	14.50	Not Req'd	0.00	14.50
Spacing@ 4^{*} L	in	14.50	14.50	Not Req'd	Not Req'd	0.00	14.50
Spacing@ .6*	in	14.50	14.50	Not Req'd	14.50	0.00	14.50
Spacing (9) $8^{\circ} \mathrm{L}$	in	14.50	14.50	14.50	14.50	0.00	14.50
Spacing @ Right	in	14.50	14.50	14.50	14.50	0.00	13.47
Query Values							
Location	It	4.00	0.00	0.00	0.00	0.00	0.00
Moment	k-ft	-34.1	-614.5	-500.4	0.0	0.0	-665.9
Shear	k	-19.7	106.0	60.9	0.0	0.0	107.1
Deflection	in	0.1276	0.0000	0.0000	0.0000	0.0000	0.0000

2.2 Concrete Beam

This program provides design analysis of single span concrete beams with a variety of end restraints, bar placements, and loading conditions.

This program is intended to provide more detailed analysis capability for a single span beam than the Multi-Span program. The Multi-Span program should be used to rapidly design multi-span beams or many simple or cantilevered beams.

Either a rectangular or T type beam can be analyzed by this program. Both types can have reinforcing located at the top and bottom of each end and in the center. All three of these locations can have two layers of top and two layers of bottom reinforcing specified.

The program also supports a variety of end fixities; Fix/Fix, Pin/Pin, Fix/Pin, and Pin/Fix. If cantilevers are needed, you will have to use the Multi-Span beam program. With this variety of reinforcing locations and end fixities, almost any type of concrete beam can be analyzed.

Up to twelve loads can be applied to the beam. These include:

- Up to five full or partial length uniform loads with dead, live, and short term components.
- Up to five point loads with dead, live, and short term components.
- Two applied moments with dead, live, and short term components.

Each recalculation of the program evaluates shears, moments, and deflections for ACI load factor combinations 9-1, 9-2, and 9-3. The concrete section analysis conforms to ACI and UBC codes. This includes the additional load factoring requirements for Seismic Zone 3 and 4, specified in UBC section 2625.

Additional features include; the ability to neglect live loads in combination with short term, optional inclusion of beam weight into applied dead loads, and specification of shear stirrup area ,to create a table of required shear stirrup spacings.

Basic Usage

- You must enter the beam span, depth, and width of the beam, however T Flange Thick, Flange Both Sides, and Web Spacing are only used when a Tee type beam is being used. They will be used to determine effective slab width and section properties. Include Bm. Wt is a YES/NO flag that will calculate and add beam weight to the applied dead loads. This is handy when designing large beams with little applied load, as the design size refinements will have the most effect on loading. Stirrup Bar Area indicates the total stirrup area at each stirrup location. This area is used to determine maximum stirrup spacings.
- These items define the material strengths and density, load factoring, and load combinations for the beam. Seismic Zone is used to determine whether applied short term loads are from wind or seismic forces (by entering 0" or non-zero numbers), and also to determine if special load factors for seismic zone 3 and 4 should be used.
- This table provides an easy method to specify reinforcing at any portion of the beam. Center, Left, and Right refer to the location of the reinforcing specified in the two columns below. Each location can have both tension and compression reinforcing by using four available entries to specify rebar depth, size, and quantity. Please note that the d distance (depth) is always measured down from the top of the beam. The column headings Top and Bottom are only for your reference, the actual d distances locate the rebar placement.
- Applied Loads provides entry of point, distributed, and moment loads. The Start and End locations refer to the distance from the left support to the position of start/end of the load.

Unique Features

- All calculations use detailed concrete section analysis routines, which determine exact strain conditions for evaluation of moment capacities.
- This program reduces the typically extensive calculations required for investigation of a doubly reinforced concrete section (with or without T flanges) down to a quick calculation.
- Due to this calculation ability, a section may be quickly designed by a series of WHAT-IF entries for beam size and reinforcing.
- The designer may specify any combination of tension or compression reinforcing. The program will adjust its analysis accordingly.

Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.

Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

General Tab

Beam Span, Depth, \&Width

These dimensions specify the beam size and length. The span value will be used to calculate moments, shears, and deflections from the applied loads. Depth and width can be modified to design the beam as required.

Flanged Beam Data

Flange Thickness

This entry specifies the thickness of a T flange at the compression edge of the beam. This entry is optional, and entering zero will mean that a simple rectangular beam is being used. The flange thickness is measured from the top of beam downward (there is no effect on the overall beam depth specified above).

Web Spacing

This item also is only needed when a T type beam is specified, and is used to calculate the effective flange width for the beam, and is the spacing between beams.

Flanges

This item helps the program calculate the effective flange width to be used when a T beam is being
used. When the beam is positioned so that the slab extends to either side answer " 2 sides".
f'c
Design concrete strength to be used.
Fy
The yield strength of reinforcing to be used.

Concrete Density

This weight is used when the program has been instructed to calculate beam weight.

Seismic Zone

This item specifies whether the short-term loads are due to wind or seismic forces. Entering a 0 " indicates that short-term loads are due to wind. Entering 1" to 4" specifies that the short-term loads come from UBC seismic zone loads. Additionally, when zone 3 and 4 is used, the special load factoring for that zone required by the UBC are used.

Does Live Load act with Short Term ?

This entry controls whether or not live loads are used when ACI load combination 9-2 calculations are executed. When short-term loads are due to wind forces, live loads are typically used, whereas seismic forces usually ignore live load effects (except high storage loads).

Include Beam Weight

This YES/NO item tells the program whether to automatically calculate the beam weight and add the dead load to the bending calculations. The weight of the flange is not calculated.

Tee Beam Weight Calculation Method

- Use Rectangular Section Only : Calculates the beam weight using only the Beam Width \& Beam Depth dimensions
- Use "Tee" section with width = Effective Width : Calculated the beam weight using the width of the "T" section flange equal to the calculated effective width of the flange.
- Use "Tee" section with Width = Web Spacing : Calculated the beam weight using the web spacing of the flange.

Rebar Tab

This tab allows you to specify the reinforcing to be used in the beam. The location of the rebar 'd' from Top is ALWAYS specified as measured from the top of the beam. The program will internally detect whether the surface where there is tension or compression and will use the rebar properly.

Size \& Count

Enter the rebar size \# (in 1/8th's of an inch) and quantity for each layer, top and/or bottom, and at the center/ends.

Rebar @ Center of Beam
These entries specify the rebar to be used to resist the maximum moment that will occur between the ends of the beam.

Rebar @ Left and Right End of Beam

These entries specify the rebar to be used to resist the moment at the left end of the beam. If the beam has a "Fixed" end and the tension is in the top of the beam, enter the 'd' distance as just a few inches.

Uniforms Loads Tab

Enter all loads as service loads. Appropriate load factors will be applied internally to calculate ultimate moments \& shears (Mu \& Vu).

Service Distributed Loads

You can enter up to three distributed loads each with dead, live and short term components that can be either full or partial length.

Service Trapezoidal Loads

You can enter up to two trapezoidal loads each with dead, live and short term components that can be either full or partial length.

Concentrated Loads Tab

ACI Load Factors

This tab specifies the load factors to be used by the program when calculation the factored dead, live, and short term loads to be used in the internal load combinations for determining Mu and Vu for the beam.

Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

Results / Summary Tab

Maximum Values

Mu
Actual moments due to ACI load combinations 9-1, 9-2, and 9-3 are listed here for the center and end of the beam.

Mn * Phi

Maximum moment capacity at the center and ends of the beam based upon beam size, reinforcing, and material strengths. To determine section capacity, a detailed static analysis of the strain conditions within the beam is executed, with minimum and maximum rebar percentages checked. When compression reinforcing has been specified, the section is still checked for ductile failure (tension steel yield). These moments are multiplied by: Phi $=0.9$.

Vu
Actual shear at each end is given here based upon applying ACI load factor combinations 9-1,9-2, and $9-3$. Shear is calculated at a distance d from the support.

Vn * Phi

The shear capacity at each end of the member is calculated using the beam dimensions and the minimum shear stirrup spacing calculated for the specified shear stirrup area.

Bending Summary

This area of calculated values gives the allowable moment and factored load moment at each of the three analysis locations. The reference to "C-1", "C-2", and "C-3" are to the ACI factoring load combinations that were run to get the results

Shear Summary

This area of calculated values gives the allowable moment and factored load moment at each of the three analysis locations. The reference to "C-1", "C-2", and "C-3" are to the ACI factoring load combinations that were run to get the results

Deflections

Deflections are listed for two combinations of service loads, which represent static and short-term load combinations. These are instantaneous deflections using ACI equation 9-7. Both upward and downward deflections and the locations at which they occur are given. If any non-zero entry in the Location entry under Additional Deflection Data has been entered, all deflections are listed for that point. Otherwise, 250 span increments are evaluated for maximum and minimum values.

Reactions

Reactions are listed for two combinations of service loads, which represent the static and short-term combinations.

Results / Section Analysis Tab

For the center area, left end and right end all of the critical values developed in the analysis of the concrete section you have specified are given.

Results \mid Sketch ${ }^{\text {Diagrams }}$ \|Printing \mid			
Summary Section Analysis /Stirrups/Other			
Evaluate Moment Capacity...	Center	Left	Right
X: Neutral Axis	3.080	4.965	2.825
a $=$ beta * Xneutral	2.618	4.220	2.401
Compression in Concrete	106.814	172.186	97.971
Sum [Steel comp. forces]	0.000	0.000	0.000
Tension in Reinforcing	-601.451	-172.200	-98.012
Find Max As for Ductile Failure...			
X-Balanced	21.898	21.898	17.7551
Xmax $=$ Xbal $* 0.75$	16.423	16.423	13.3163
a-max $=$ beta ${ }^{\text {* }}$ Xbal	18.613	18.613	15.0918
Compression in Concrete	2,079.166	569.566	461.810
Sum [Steel Comp Forces]	287.250	19.516	95.511
Total Compressive Force	2,366.416	589.082	557.321
AS Max = Tot Force / Fy	39.440	9.818	9.2887
Actual Tension As	10.000	2.870	2.480
	OK	OK	OK

Results / Stirrups Tab

This section lists minimum stirrup spacings at seven divisions along the beam length. Shear provisions of ACI section 11.3, 11.4, and 11.5 are evaluated using the Shear Area entered in the section titled Beam Data.

Results Sketch ${ }^{\text {Diagrams } \mid \text { Printing }}$		
Summary $/$ Section Analysis Stirrups/Other		
Stirrup Area@ Cross S	ection	0.220 in2
Region Max.	Stirrup Spacing in region	Max Vu in region
0.00 ft	12.876 in	87.365 k
5.00 ff	16.500 in	80.064 k
10.00 ft	16.500 in	60.901 k
15.00 ft	16.500 in	11.369 k
20.00 ft	Not Req'd in	11.369 k
25.00 ft	16.500 in	65.337 k
30.00 ft	16.500 in	79.832 k
Neutral Axis		7.270 in
Igross		167218.98 in4
Icracked		84,172.56 in4
Elastic Modulus		3,122.0 psi
$\mathrm{Fr}=7.5{ }^{*} \mathrm{fc}^{\text {a }} .5$		410.792 ksi
Z:Cracking (ACl 10.6 .4)		$83.108 \mathrm{k} / \mathrm{in}$
Eff. Flange Width		90.00 in
Mcr		206.74 k-ft
Ms:Max DL + LL		445.71 k-ft
R 1 = (Ms:DL+LL)/Mcr		0.464
$\begin{aligned} & \text { Ms:Max DL+LL+ST } \\ & \text { R2 }=(\text { Ms: } \mathrm{DL}+\mathrm{LL}+\mathrm{ST} \text {)/Mcr } \end{aligned}$		$\begin{gathered} 248.46 \mathrm{k} \text {-ft } \\ 0.832 \end{gathered}$
l:eff... Ms(DL+LL)		$92,460.739 \mathrm{in4}$
I: eff... Ms($\mathrm{CL}+\mathrm{LL}+\mathrm{ST}$)		132019.325 in4

Stirrup Area @ Cross Section

Enter the cross sectional area of the stirrups to be used for the calculation of stirrup spacing. For example, if you are using \#3 stirrups there will be two vertical legs capable of resisting shear so the area to enter is 0.11 sq. in $* 2$ legs $=0.22$ in^2.

The table gives the stirrup spacing requirements for various regions of the beam divided up into equal length increments. The maximum stirrup spacing and the actual shear in that area (the maximum) is given.

If the spacing shows as "999" then the shear is below code limits and stirrups are not required for shear (but might be to satisfy minimum reinforcing requirements).

Additional Deflection Values

This section gives additional details of the values calculated in the program for use in calculating section properties and values for deflection

Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print

Sketch] button will print the sketch in large scale on a single sheet of paper.

Diagrams Tab

This displays a moment, shear, and deflection diagram for the beam with the applied loads and end conditions. Note the two tabs...."Graphic Diagram" and "Data Table". The Data Table tab provides the entire internal analysis at the $1 / 500$ th points within the beam.

Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".

```
Results|Sketch|Diagrams Printing |
    Please select printout sections to be printed...
\begin{tabular}{|c|c|}
\hline General Information & V \\
\hline Reinforcing & V \\
\hline Uniform Loads & V \\
\hline Trapezoidal Loads & V \\
\hline Concentrated Loads & V \\
\hline Moments & \(\sqrt{V}\) \\
\hline Summary & V \\
\hline Bending \& Shear Force Summary & V \\
\hline Deflection & V \\
\hline Section Analysis & V \\
\hline Additional Deflection Calcs & \(\nabla\) \\
\hline ACl Factors & V \\
\hline
\end{tabular}
```

Note: When all are selected, the sottware will still omit unused sections

Sample Printout

ENERCALC Engineering Software
P.O. Box 188

Corona del Mar, CA 92660
Voice: 949.645-0151

Title: ENERCALC Example Problems Job \# 97-000001
Dsgne MDB Dates $10.43 \mathrm{PM}, 26$ OCT 03
Description: Collaction of example problems

www.enercalc.com

Description Moments @ Each End, + \& - reinforcing

ENERCALC Engineering Software	Title: ENERCALC Example Problems	Job \# 97-000001
P.O. Box 188	Dsgnr: MDBDescription: $10.43 \mathrm{PM}, 26$ OCT 03Delection of example problems	
Corona del Mar, CA 92660		
Voice: 949-645-0151 www.enercalc.com	Scope: Al programs in the Strue	ral Engneering Library
	Tee Beam Design	
Description Moments @ Each End, + \& - reinforcing		

2.3 Rectangular Column

This program provides analysis of rectangular concrete columns loaded with axial loads and uniaxial bending moments. The program uses applied loads, reinforcing, material
strengths, and slenderness criteria to perform a complete numerical analysis of the column for ACI load combination equations 9-1, 9-2, and 9-3.

Axial loads can be applied at an eccentrically from the column centerline. Concentrated moments can be applied at the top or bottom. Lateral point and distributed loads can also be applied to the column, allowing the column to be analyzed with any degree of bending effects. All applied axial and bending loads can have dead, live, and short term components.

The evaluation of slenderness effects is provided by entering sidesway bracing status, effective length factors, and column heights. ACI section 10.11 is used to determine a moment magnification factor which will be applied to the resultant eccentricity. Up to five layers of reinforcing can be specified in the column, each with its own d distance. This provides the ability to analyze columns with different bar layouts (see below).

Rectangular Column Design

Basic Usage

- Design Data Section allows you to enter material strengths, data effecting short-term load combinations, and slenderness data. Seismic Zone can be set to 0" to indicate wind, or 1 thru 4 to indicate seismic zones. For seismic zone 3 and 4, the additional load factoring provision of UBC section 2625 will be used. You can also specify whether the live load should be used in short-term load combinations.
- Slenderness factors describing the column bracing and effective length factors effect the actual length used to calculate column slenderness.
- In the Column Data section, enter the depth, width, and height of your column. The height will be used to calculate transverse column moments, due to applied distributed and point loads, and also for actual column length used for slenderness.
- You can enter up to five rebar sets for each column. These can be used to place reinforcing in different locations within the column. All sets allow you to specify bar \#, count, and a d distance from the compression face (which, for reference of axial eccentricity and applied loads, is the right side of the column in the examples).
- Applied Loads include the axial and bending loads applied to the column. Because of the variety of loads available, sign convention is important.
- Axial Eccentricity: Positive eccentricity indicates the load is placed to the left of the column, applying a clockwise moment to the top of the column.
- Applied Moments: Positive moment applies a clockwise moment to the column.
- Applied Loads : Positive point and distributed loads force column's mid-span to deflect to the left, inducing tension on the left-hand fibers. (The deflection signs are created by applying the axial load at a positive eccentricity.)

Unique Features

- Evaluates column slenderness and strength for all three ACI load factor combinations.
- Up to five layers of reinforcing are allowed at various depths in the column.
- Complete slenderness analysis is provided.
- Ability to combine beam type loads with eccentric axial loads.

Assumptions \& Limitations

- Columns may be COMPRESSION ONLY....no tension.
- Determines an equivalent axial load and eccentricity for use in analyzing the concrete section. Applied moments, distributed loads, and point loads are combined with moments induced from axial load eccentricity, to form a moment diagram at 250th points along the column. The maximum moment is obtained from this analysis and used to calculate an equivalent eccentricity of the axial load. This eccentricity is then factored according to slenderness effects and used to calculate column load capacity.
- The program compares actual load and eccentricity with Ecc. Balanced to determine whether a compression or tension failure mode will control design strength.
- Column capacity assumes the code required lateral ties are provided.

Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow. Here is a sketch of the example:

(5) Mtop: $\mathrm{DL}=31.0, \mathrm{LL}=26.0, \mathrm{ST}=5.1 \mathrm{k} \cdot \mathrm{ft}$

Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

General Tab

Column Width

Enter the column width here.

Column Depth

Enter the column depth. Moments applied to the column will create tension and compression on the outer edges of the "depth" dimension.

Total Height

This is the total height of the column and is only needed if you are entering applied lateral loads to the column. If you are this length is needed to perform the beam analysis to determine the moments along the column's length.

Unbraced Length

Enter the unbraced length of the column that should be use in the calculation of column slenderness.
f'c
Specified 28 day compressive strength of concrete to be used.
Fy

Yield strength of reinforcing steel to be used.

Seismic Zone

This item specifies whether the short term loads are due to wind or seismic forces. Entering a 0 " indicates that short-term loads are due to wind. Entering 1" to 4" specifies that the short-term loads come from UBC seismic zone loads. Additionally, when zone 3 and 4 are used, the special load factoring for that zone required by the UBC are used.

Include Live Load w/ Short Term Loads

This entry controls whether or not live loads are used when ACI load combination C-2 calculations are executed. When short-term loads are due to wind forces, live loads are typically used, whereas seismic forces usually ignore live load effects (except high storage loads).

Reinforcing Specification

Enter your reinforcing selection in this area. You have the option of entering up to five layers of rebar, each with its own size, quantity, and depth. The concrete section analysis procedures will use the total area and d distance to each layer to determine internal strains and forces.

Bar Size \#

Enter the bar size in each layer. The size \# and count will determine the reinforcing area in each layer.

Bar Count

Enter the number of bars in each layer.

d - Depth to Rebar

Enter the distance from extreme compression/tension fiber to the centerline of reinforcing layer.

Effective Length Factor

This factor is applied to the unbraced length to determine Lu. The common reference for k factors can be found in the AISC handbook, Figure C1.8.1

Unbraced Column ?

Leave this box unchecked if the column is braced against sidesway. Check this box , if it's free to deflect laterally when loaded.

When the column is unbraced, the effective length used to calculated slenderness will be adjusted. For unbraced columns, a factor must also be entered to magnify eccentricity further. Please see the explanation for M2S * DeltaS.

For braced columns, slenderness is neglected if:
$\mathrm{k} \mathrm{LU} / \mathrm{r}<(34-12(\mathrm{M} 1 / \mathrm{M} 2)$ Where M1>M2
For unbraced columns, slenderness is neglected if: k LU/r < 22.

Delta:s

For unbraced columns, ACI equation 10-6 requires that a magnification factor to account for the entire frame systems potential to drift be specified. Enter that factor here, and it will be added to the magnification factor calculated in the program, before application to the design eccentricity to calculate final eccentricity.

Load Entry Tab

This section allows you to enter loads on the column to be included in the analysis. Using the applied moments, point loads, distributed loads, and moment induced by axial load eccentricity, a moment diagram for the column is internally constructed. The maximum moment in the column is then used to determine an equivalent eccentricity of the applied axial load. This
eccentricity is used for all further analysis procedures to determine neutral axis location, internal strains, and compressive capacity. All applied loads may have dead, live, and short term components. Load factoring of short-term components is governed by the Seismic Zone entry.

Axial

Enter the maximum axial dead, live, and short-term loads and moments the column will be subjected to. Do not apply load factors to these loads.

Applied Loads

Eccentricity For the previously entered axial loads, you may specify an eccentricity to the column Depth centerline. This induced top moment will be combined with the other moments to determine final moment and load eccentricity. A positive eccentricity applies a clockwise moment to the top of the column.

Moments

You may enter a concentrated moment applied to the top or bottom of the column. Positive moments
apply a clockwise torque to the column.

Uniform

Up to two full or partial length uniform loads can be applied to create bending moments between supports. Positive uniform loads act to deflect the column to the left (side of negative axial eccentricity).

Point

Up to two concentrated loads can be applied to create bending moments between supports. Positive uniform loads act to deflect the column to the left (side of negative axial eccentricity).

ACI Factors Tab

This tab specifies the load factors to be used by the program when calculation the factored dead, live, and short term loads to be used in the internal load combinations for determining Pu and Mu for the column.

Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

Results Tab

The program performs a detailed analysis of the column for ACI load combinations $\mathrm{C}-1, \mathrm{C}-2$, and $\mathrm{C}-3$. Using the applied loads, an equivalent eccentricity is calculated and then factored by the Moment Magnification Factor which was evaluated considering slenderness effects. This eccentricity is used to calculate internal strains and forces. These forces are resolved into
allowable axial capacities. A satisfactory design results when $\mathrm{Pu}<=\mathrm{Pn} *$ Phi for all three ACI load combinations.

Results	Sketch	Diagrams Pr	Printing		
					Column is OK
			IEq. $\mathrm{C}-1$	Eq. C-2	$\mathrm{AClEq} . \mathrm{C}-3$
Pu: Max Factored Pn*Phi@Design Ecc.			432.14	432.14	$432.14 k$
			494.73	494.73	494.73 k
M-critical			303.67	303.67	303.67 k-ft
Combined Eccentricity			8.433	8.433	8.433 in
Magnification Factor			1.00	1.00	1.00
Design Eccentricity			8.433	8.433	8.433 in
Magnified Design Moment			303.67	303.67	303.67 k-ft
Po *. 80			1,270.83	1,270.83	$1,270.83 \mathrm{k}$
P : Balanced			578.72	578.72	578.72 K
Ecc: Balanced			10.889	10.889	10.889 in
Slenderness...					
Actual k Lu/r Elastic Modulus			$\begin{aligned} & 45.714 \\ & 3,122.0 \mathrm{ksi} \end{aligned}$	Beta	0.850
			ACl Eq. $\mathrm{C}-1$	ACl Eq. $\mathrm{C}-2$	A $\mathrm{ACl} \mathrm{Eq}. \mathrm{C-3}$
Neutral Axis Distance			14.5450	14.5450	14.5450 in
Phi			0.7000	0.7000	0.7000
```Max Limit kl//r Beta = M:sustained/M:max```			34.0000	34.0000	34.0000
			0.5232	0.5232	0.5232
Cm			0.6000	0.6000	0.6000
El/ 1000			19,833.87	19,833.87	19,833.87
Pc: $\mathrm{pi}^{\wedge} 2 \mathrm{El} /(\mathrm{kLu})^{\wedge} 2$			2,360.06	2,360.06	2,360.06
alpha: MaxPu/ ( 75 Pc )			0.2441	0.2441	0.2441
Delta : Magnification Factor			\% 1.0000	1.0000	1.0000
Ecc: Ecc Loads + Moments			8.4325	8.4325	8.4325 in
Design Ecc $=$ Ecc* Delta			a 8.4325	8.4325	8.4325 in

## Pu : Max Factored Axial Load

Maximum factored axial load for each ACI equation.

## Pn * Phi @ Design Eccentricity

Maximum compressive load capacity of the column considering size, reinforcing, and slenderness. Phi equals 0.70 since this program deals with rectangular tied columns.

## Final Eccentricity

This eccentricity is obtained by calculating an equivalent eccentricity at which the axial loads would have to be applied to create the same maximum moment as created by all applied bending loads. Minimum eccentricity is $0.6+0.03 *$ Diameter.

## Magnification Factor

This factor is determined by slenderness effects (see next section).

## Design Eccentricity

This is the eccentricity used for determining column capacity, and is equal to Final Eccentricity * Magnification Factor.

## Po *. 80

This is the column capacity if no slenderness or bending were effecting the column.

## P: Bal \& Ecc. Bal.

Balanced load and eccentricity are calculated to verify whether the column is working in a Tension Failure or Compression Failure mode. This load, when applied at the Balanced Eccentricity , produces simultaneous ultimate strains in concrete and steel. This value is given only for reference.

## Slenderness Effects

## Actual k*Lu/r

This value will be used for the column slenderness calculations. $k$ and $L u$ have already been entered. $r$, the radius of gyration, is equal to $0.288^{*}$ Depth.

## Beta

This is the typical concrete factor: Beta $=0.85-0.05\left(f^{\prime} \mathrm{c}-4000\right) / 1000$

## Elastic Modulus

This is calculated as: 57,000 * ( $\left.\mathrm{f}^{\prime} \mathrm{c}\right)^{1 ⁄ 2}$ Because the neutral axis distance varies according to the Design Eccentricity, the slenderness analysis is completed for all ACI load combinations.

## Neutral Axis Dist.

The neutral axis distance represents the point at which compression and tension forces are balanced for the section and design eccentricity.

## Phi

The Phi factor is calculated by balancing the effects of axial and bending loads in accordance with ACI section 9.3.2.2.

## Max. K Lu/r to Neglect

The maximum allowable slenderness ratio is calculated in accordance with ACI 10.11.4, considering unbraced length, effective length factor, radius of gyration, and bracing status.

## Beta

Ratio of factored dead load moment to factored total load moment.

## Cm

CM is determined in accordance with ACI 10.11.5.3.

EI
This represents the minimum value of ACI equation $10-10$ and $10-11$. (ACI states that either value can be used, so both are calculated and the minimum taken to be conservative).

Pc
Critical buckling load, calculated using equation 10-9.

## Alpha

This value will be used to calculate the actual magnification factor, and is the ratio of $\mathrm{Pu} /(\mathrm{Phi} * \mathrm{Pc})$ from $A C I$ equation 10-7.

## Delta

Actual moment magnification factor calculated using ACI equation 10-7.

## Eccentricity

Please see Final Eccentricity in the section titled Summary.

## Design Ecc.

Please see Design Eccentricity in the section titled Summary.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Diagrams Tab

This displays a moment, shear, and deflection diagram for the beam with the applied loads and end conditions. Note the two tabs...."Graphic Diagram" and "Data Table". The Data Table tab provides the entire internal analysis at the 1/500th points within the beam.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


## Sample Printout

ENERCALC Engineering Software
P.O. Box 188

Corona del Mar, CA 92660
Voice: 949-645-0151
www.enercalc.com

Fsw. 180000 Uner: KW. cocouodi, Ver 5.8.0, 10-5ep. 2003 (c) 1903-2003 EN M CHLC Enjineering Sotware	Rectangular Concrete Column	Page 1 cieco55lemangles.acu: Concrete Caios
Description Column with	End Moments	



ENERCALC Engineering Software
P.O. Box 188

Corona del Mar, CA 92660
Voice: 949-645-0151
www.enercalc.com

Title : ENERCALC Example Problems Job \# 97-000001
Ds gnr: MDB Date: $10.48 \mathrm{PM}, 26$ OCT 03
Description : Collection of example problems
Scope: All programs in the Structural Engineering Library

Description Column with Applied End Moments


### 2.4 Circular Column

This program provides analysis of circular concrete columns loaded with axial loads and bending moments about one axis. The program uses applied loads, reinforcing, material strengths, and slenderness criteria to perform a complete numerical analysis of the column for ACI load combination equations 9-1, 9-2, and 9-3.

Axial loads can be applied at an eccentrically to the column centerline. Concentrated moments can be applied at the top or bottom. Point and distributed loads can also be applied laterally to the column, allowing the column to be analyzed with any degree of
bending effect. All applied axial and bending loads can have dead, live, and short term components.

The evaluation of slenderness effects is provided by entering sidesway bracing status, effective length factors, and column heights. ACI section 10.11 is used to determine a moment magnification factor which will be applied to the resultant eccentricity.
You can specify reinforcing to be placed at a clear distance from the column face in a circular pattern, and specify whether spirals will be used to increase column capacity.


## Basic Usage

- The Design Data Section allows you to enter material strengths, data affecting short-term load combinations, and slenderness data. Seismic Zone can be set to 0" to indicate wind, or 1" thru 4" to indicate seismic zones. For seismic zone 3 and 4, the additional load factoring provision of UBC section 2625 will be used. You can also specify whether the live load should be used in short-term load combinations.
- Slenderness factors describing the column bracing and effective length factors effect the actual length used to calculate column slenderness.
- In the Column Data section, enter the diameter and height of your column. The height will be used to calculate transverse column moments due to applied distributed and point loads, and also for actual length used for column slenderness. Also, enter the reinforcing and clear cover from the rebar centerline to face of
column.
- Applied Loads include the axial and bending loads applied to the column. Because of the variety of loads available, sign convention is important.
- Positive eccentricity indicates the load is placed to the left of the column, applying a counter-clockwise moment to the top of the column (following the right-hand rule).
- Applied Moments: Positive moment applies a clockwise moment to the column.
- Applied Loads: Positive point and distributed loads force column's mid-height to deflect to the left, inducing tension on the left-hand fibers.


## Unique Features

- Program evaluates column slenderness and strength for all three ACI load factor combinations.
- Easily specify reinforcing size and bar count at a cover distance from the column face. The program will automatically distribute the bars evenly around the circumference.
- Complete slenderness analysis is provided.
- Ability to combine beam type loads with eccentric axial loads.


## Assumptions \& Limitations

- Square rebar cages are not allowed.
- Program determines an equivalent axial load and eccentricity for use in analyzing the concrete section. Applied moments, distributed loads, and point loads are combined with moments induced from axial load eccentricity to form a bending analysis at 250th points along the column. The maximum moment is obtained from this analysis and used to calculate an equivalent eccentricity of the axial load. This eccentricity is then factored according to slenderness effects and used to calculate column load capacity.
- The program compares actual load and eccentricity with Ecc. Balanced to determine whether a compression or tension failure mode will control design strength.
- Column capacity assumes the code required lateral ties are provided.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab



## Column Diameter

The outside diameter of the concrete column.

## Total Height

This is the total height of the column and is only needed if you are entering applied lateral loads to the column. If you are this length is needed to perform the beam analysis to determine the moments along the column's length.

## Unbraced Length

Enter the unbraced length of the column that should be use in the calculation of column slenderness.
f'c
Specified 28 day compressive strength of concrete to be used.
Fy
Yield strength of reinforcing steel to be used.

## Seismic Zone

This item specifies whether the short term loads are due to wind or seismic forces. Entering a 0 " indicates that short-term loads are due to wind. Entering 1" to 4" specifies that the short-term loads come from UBC seismic zone loads. Additionally, when zone 3 and 4 are used, the special load factoring for that zone required by the UBC are used.

## Include Live Load w/ Short Term Loads

This entry controls whether or not live loads are used when ACI load combination C-2 calculations are executed. When short-term loads are due to wind forces, live loads are typically used, whereas seismic forces usually ignore live load effects (except high storage loads).

## Number of Bars

Enter the number of bars vertically in the column that are enclosed in ties to be considered as reinforcement.

## Bar Size \#

Enter the bar size in each layer. The size \# and count will determine the reinforcing area in each layer.

## Total Rebar Area

Area of rebar (number of bars * bar area).

## Bar Cover

This is the distance from the edge of the bar to the outside edge of the column.

## Effective Length Factor

This factor is applied to the unbraced length to determine Lu. The common reference for $k$ factors can be found in the AISC handbook, Figure C1.8.1

## Unbraced Column ?

Leave this box unchecked if the column is braced against sidesway. Check this box , if it's free to deflect laterally when loaded.

When the column is unbraced, the effective length used to calculated slenderness will be adjusted. For unbraced columns, a factor must also be entered to magnify eccentricity further. Please see the explanation for M2S * DeltaS.

For braced columns, slenderness is neglected if:
$\mathrm{k} \mathrm{LU} / \mathrm{r}<$ ( 34 -12(M1/M2) Where M1>M2
For unbraced columns, slenderness is neglected if:
$\mathrm{kLU} / \mathrm{r}<22$.

## Delta:s

For unbraced columns, ACI equation 10-6 requires that a magnification factor to account for the entire frame systems potential to drift be specified. Enter that factor here, and it will be added to the magnification factor calculated in the program, before application to the design eccentricity to calculate final eccentricity.

## Loads Tab

This section allows you to enter loads on the column to be included in the analysis. Using the applied moments, point loads, distributed loads, and moment induced by axial load eccentricity, a moment diagram for the column is internally constructed. The maximum moment in the column is then used to determine an equivalent eccentricity of the applied axial load. This eccentricity is used for all further analysis procedures to determine neutral axis location, internal strains, and compressive capacity. All applied loads may have dead, live, and short
term components．Load factoring of short－term components is governed by the Seismic Zone entry．


## Applied Moments．．．

	Dead Load	Live Load	Short Term
＠Top	$31.000 \frac{1}{7}$	26.000 考	5.100 䨌k－ft
＠Bottom	$31.000 \stackrel{4}{7}$	26.000 者	5.100 考 $k$－ft

Lateral Uniform Loads．．．


## Lateral Point Loads．．．



## Axial

Enter the maximum axial dead，live，and short－term loads and moments the column will be subjected to．Do not apply load factors to these loads．

## Applied Loads

Eccentricity For the previously entered axial loads，you may specify an eccentricity to the column Depth centerline．This induced top moment will be combined with the other moments to determine final moment and load eccentricity．A positive eccentricity applies a clockwise moment to the top of the column．

## Moments

You may enter a concentrated moment applied to the top or bottom of the column．Positive moments apply a clockwise torque to the column．

## Uniform

Up to two full or partial length uniform loads can be applied to create bending moments between supports. Positive uniform loads act to deflect the column to the left (side of negative axial eccentricity).

## Point

Up to two concentrated loads can be applied to create bending moments between supports. Positive uniform loads act to deflect the column to the left (side of negative axial eccentricity).

## Spiral Ties Tab

This tab is used to specify the spiral ties that are used in the column. If the checkbox for "Spiral Ties used" is not checked then the program will assume non-continuous simply hoop ties.


## ACI Factors Tab

This tab specifies the load factors to be used by the program when calculation the factored dead, live, and short term loads to be used in the internal load combinations for determining Pu and Mu for the column.


## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results Tab

The program performs a detailed analysis of the column for ACI load combinations $\mathrm{C}-1, \mathrm{C}-2$, and $\mathrm{C}-3$. Using the applied loads, an equivalent eccentricity is calculated and then factored by the Moment Magnification Factor which was evaluated considering slenderness effects. This eccentricity is used to calculate internal strains and forces. These forces are resolved into allowable axial capacities. A satisfactory design results when $\mathrm{Pu}<=\mathrm{Pn} *$ Phi for all three ACI load combinations.

Results Sketch $^{\text {D }}$ Diagrams $/$ Printing ${ }^{\text {a }}$			
Column is OK			
	ACl Eq. C-1 AC	ACl Eq. C-2 A	ACl Eq. $\mathrm{C}-3$
Pu: Max Factored	432.14	285.60	204.85 k
Pn*Phi@ Dsgn Ecc.	797.85	797.85	797.85 k
M-critical	216.07	142.80	102.42 k -ft
Combined Eccentricity	6.0000	6.0000	6.0000 in
Magnification Factor	1.00	1.00	1.00
Design Eccentricity	6.0000	6.0000	6.0000 in
Magnified Moment	216.07	142.80	102.42 k-ft
Po * 80 1,	1,703.95	1,703.95	$1,703.95 \mathrm{k}$
P: Balanced	677.52	677.52	677.52 k
Ecc: Balanced 10	10.8365	10.8365	10.8365 in
Slenderness.....			
Actual $\mathrm{k} \mathrm{Lu} / \mathrm{r}$Elastic Modulus	37.333	Beta	0.850
	3,122.019 ksi		
	ACl Eq. C-1	$1 \mathrm{ACIEq}. \mathrm{C-2}$	$2 \mathrm{ACIEq.C-3}$
Neutral Axis Distance	18.4735	518.4735	18.4735 in
Phi	0.7500	- 0.7500	0.7500
Max Limit kl/r	37.3289	- 37.1369	37.0588
Beta $=$ M:sustained/M:max	$\times \quad 0.5232$	20.7917	0.7095
Cm	0.4890	- 0.4954	0.4980
El/ 1000	21,613.24	$4 \quad 18,374.79$	19,257.48
Pc: pin $2 \mathrm{El} /(\mathrm{k} \mathrm{Lu})^{n} 2$	3,359.07	2,855.76	2,992.94
alpha: $\mathrm{MaxPu} /(.75 \mathrm{Pc})$	0.1715	$5 \quad 0.1333$	0.0913
Delta : Magnification Factor	ctor 1.0000	-1.0000	1.0000
Ecc: Ecc Loads + Moments	hts 6.0000	6.0000	6.0000 in
Design Ecc $=$ Ecc * Delta	6.0000	06.0000	6.0000 in

## Pu : Max Factored Axial Load

Maximum factored axial load for each ACI equation.

## Pn * Phi @ Design Eccentricity

Maximum compressive load capacity of the column considering size, reinforcing, and slenderness. Phi equals 0.70 since this program deals with rectangular tied columns.

## Final Eccentricity

This eccentricity is obtained by calculating an equivalent eccentricity at which the axial loads would have to be applied to create the same maximum moment as created by all applied bending loads. Minimum eccentricity is $0.6+0.03 *$ Diameter.

## Magnification Factor

This factor is determined by slenderness effects (see next section).

## Design Eccentricity

This is the eccentricity used for determining column capacity, and is equal to Final Eccentricity * Magnification Factor.

## Po * . 80

This is the column capacity if no slenderness or bending were effecting the column.

## P : Bal \& Ecc. Bal.

Balanced load and eccentricity are calculated to verify whether the column is working in a Tension Failure or Compression Failure mode. This load, when applied at the Balanced Eccentricity , produces simultaneous ultimate strains in concrete and steel. This value is given only for reference.

## Slenderness Effects

## Actual $\mathbf{k}^{*}$ Lu/r

This value will be used for the column slenderness calculations. $k$ and Lu have already been entered. $r$, the radius of gyration, is equal to $0.288^{*}$ Depth.

## Beta

This is the typical concrete factor: Beta $=0.85-0.05\left(f^{\prime} \mathrm{c}-4000\right) / 1000$

## Elastic Modulus

This is calculated as: 57,000 * ( $\left.\mathrm{f}^{\prime} \mathrm{c}\right)^{1 ⁄ 2}$ Because the neutral axis distance varies according to the Design Eccentricity, the slenderness analysis is completed for all ACI load combinations.

## Neutral Axis Dist.

The neutral axis distance represents the point at which compression and tension forces are balanced for the section and design eccentricity.

## Phi

The Phi factor is calculated by balancing the effects of axial and bending loads in accordance with ACI section 9.3.2.2.

## Max. K Lu/r to Neglect

The maximum allowable slenderness ratio is calculated in accordance with ACI 10.11.4, considering unbraced length, effective length factor, radius of gyration, and bracing status.

## Beta

Ratio of factored dead load moment to factored total load moment.
Cm
CM is determined in accordance with ACI 10.11.5.3.
EI
This represents the minimum value of ACI equation $10-10$ and $10-11$. (ACI states that either value can be used, so both are calculated and the minimum taken to be conservative).

## Pc

Critical buckling load, calculated using equation 10-9.

## Alpha

This value will be used to calculate the actual magnification factor, and is the ratio of $\mathrm{Pu} /(\mathrm{Phi} * \mathrm{Pc})$ from ACI equation 10-7.

## Delta

Actual moment magnification factor calculated using ACI equation 10-7.

## Eccentricity

Please see Final Eccentricity in the section titled Summary.

## Design Ecc.

Please see Design Eccentricity in the section titled Summary.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Diagrams Tab

This displays a moment, shear, and deflection diagram for the beam with the applied loads and end conditions. Note the two tabs...."Graphic Diagram" and "Data Table". The Data Table tab provides the entire internal analysis at the $1 / 500$ th points within the beam.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


## Sample Printout

## ENERCALC Engineering Software <br> P.O. Box 188 <br> Corona del Mar, CA 92660 <br> Voice: 949-645.0151

www.enercalc.com

Title: ENERCALC Example Problems Job \# 97-000001
Dsgnr: MDB Date: 10:53PM, 26 OCT 03
Description : Colection of example problems
Scope: Al programs in the Structural Engineering Library

Bex 50000 Uker kurceoodol, 40 5.80, 10-59-2009 (G1)	Circular Concrete Column	Page 1   c lecerteramples pow Concizto Cales

Description Column with Applied End Moments




### 2.5 Tilt-Up Wall Panel

This program provides design investigation for a one foot wide strip of concrete wall panel subjected to axial and lateral loads due to wind or seismic forces. Six different design methods may be specified which cover the typical design philosophies for tilt-up wall panels. These methods combine vertical and lateral loads to calculate wall moments and deflections.

The differences in the design methods center around the moment of inertia used to calculate wall deflections, and exactly how the maximum wall deflection is obtained. The methods include:

- Analysis according to section 2614(i) of the Uniform Building Code. This method is based upon tests performed by a committee of the Structural Engineers Association


## of Southern California.

- Analysis using ACI equation 9-7 to calculate moment of inertia. This simplified equation yields a conservative moment of inertia. Analysis using this moment of inertia can either iterate wall deflections to convergence, or directly calculate wall deflection at the maximum moment capacity.
- Analysis using ICRACKED for the full height of the wall, and is very conservative. Analysis using this moment of inertia can either iterate wall deflections to convergence, or directly calculate wall deflection at the moment capacity of the wall.

Along with these different analysis methods, you can include the effects of fixity at the base of the wall (for dock-high walls) and wind or seismic load on a projecting parapet.

In addition to eccentric roof dead and live loads, you can apply axial loads to the top of the wall, simulating loads due to a wall section above. The program also allows point and distributed loads to be applied laterally to the panel strip, giving you the capability to design narrow jambs beside openings.

Each time the program is recalculated, both seismic and wind loads are used to determine service and factored moments and deflections. Results include moment capacity, applied moments at mid-height and at top of wall, actual and allowable axial stress, reinforcement ratio, height/deflection ratio, and height/thickness ratio.


## Basic Usage

- Wall Data defines the overall wall geometry. Clear Height is the distance the wall panel strip spans from points of lateral support, typically between floor and roof diaphragm. Parapet Height is actually used as a cantilever, applying additional vertical loads and moments to the top of the wall. Wall thickness and rebar size and spacing control the strength of the wall, and are the items you can easily change to achieve a satisfactory design.
- Concrete Weight is used to generate lateral and vertical loads due to the walls own weight. Maximum Deflection ratio is typically a code specified limit on the clear span/deflection allowable.
- Design Data allows you to define the items that specify the load combinations and factors used. Phi is entered to reflect the actual construction quality, and not a calculated value (this procedure is typical of many codes, with Phi being set to 0.72 for uninspected and 0.90 for inspected construction). The Seismic Factors for both wall and parapet can be entered to create the lateral seismic loads to a wall panel strip. If you choose to Include the Parapet in the analysis, the lateral wind and seismic loads acting on the parapet will counteract the lateral loads below.
- Lateral Loads can be applied to the wall in addition to the automatically generated seismic loads. Wind Load analysis is always performed with each recalculation. Point and Uniform Lateral Loads can be applied to the panel strip to represent lateral load contributed from the concrete area above an adjacent opening (e.g: a lintel), and should be entered as unfactored loads (but with seismic factor already used to reduce the actual wall weight).
- Vertical Loads from a roof or floor can be applied to the wall, either concentrically or eccentrically as from a ledger.
- You can Choose Design Methods according to your own personal design theory preference. The methods basically allow you to vary the moment of inertia used to calculate deflections, and the method used to obtain maximum deflections. These choices are based on the design theories the SEAOSC Yellow and Green book methods, the UBC section 2614(i) procedure, and adaptation of ACI equation 9-7 to P-Delta analysis.
- For each method, both wind and seismic load analysis are performed. Applied and generated vertical and lateral loads are factored and used to generate moment diagrams at 250 span increments along the clear height. Depending on the design method chosen, the deflections will then be iterated using P-Delta moments until deflection convergence occurs.
- Because the program:
- Allows fixity at the base of the wall.
- Allows the parapet moments to reduce bending between supports, and
- Allows added lateral point and uniform loads,
- the standard methods of calculating moments at mid-height are not used. Instead, full deflection iteration is performed and all 250 span increments searched for maximum deflection and bending values. Enough detail is provided for the user to review all section analysis values, service load level deflection calculations, and factored load ultimate moment calculations.
- By repeatedly modifying wall thickness and rebar size and spacing, you can quickly generate an economical wall panel strip design to conform to deflection limits,
strength capacity, allowable axial stress, and acceptable reinforcing percentages.
- When your design is complete, Print or Save the data from your calculation, Reset the calcsheet to begin another wall design, or use the Access Menu to use another program.


## Unique Features

- By supplying six different design methods, virtually all recognized design methods are available for use.
- The actual moment and deflection of the wall is calculated by going through a series of iterations as the wall increasingly deflects laterally. The analysis is performed for 250 points along the wall's span.
- Both wind load and seismic loads are evaluated side by side for quick determination of governing cases.
- User may specify Phi factor to represent different special inspection conditions.
- Program computes both service load deflection and factored moments.
- Assumptions \& Limitations
- For lateral design of jamb strips or piers between openings, the user can determine the pro-rated lateral load on the strip of wall by multiplying the seismic factor by the ratio:(Tributary Load/Actual Load) * Code Specified Seismic Factor


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.

Design Method: Exact 1997 UBC 1914.0


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab

General Loads ACl Factors			
Description Flat wall strip w/ wind load			
Clear Height		26.000 -	
Parapet Ht.		3.500 \%	
Thickness		6.00	
Bar Size		5	
Bar Spacing		16.00	
Bar Depth		3.500 ¢	
Analysis Method			
UBC Slender Wall		erated Iter	
ACl 318-02		$r$	
Empirical		$\bigcirc$	
Seismic Zone		4	
Adjust Moment	When Thk/2 $2>$ Bar Dep		$\Gamma$
$f \mathrm{c}$	3,000.0 $\frac{1}{7} \mathrm{psi}$	Min Vert Steel \%	$0.0020 \frac{4}{7}$
Fy	60,000.0	Min Horiz Steel \%	0.0012 考
	0.900	Strip Width	$12.00 \frac{4}{7}$ in
Concrete Wt	145.00 $\frac{ \pm}{3} \mathrm{pcf}$	Min Defl. Ratio	150.00

## Clear Height

Enter the distance between lateral supports for the wall. This is typically between the floor slab and attached floor and/or roof diaphragm.

## Parapet Height

This height is an extension of the wall above the top support, and will be treated as a cantilever when lateral seismic and wind loads are applied. This will tend to reduce the moment and deflection between supports by applying an opposite concentrated moment at the top support.

## Thickness

Wall thickness to be used in design analysis. This thickness will be used to calculate wall weight for vertical and lateral loads. When there are recessed reveals in the wall for architectural treatment, enter the gross thickness here and modify the reinforcing depth to center the rebar in the net panel thickness.

## Bar Size

Enter the rebar size for vertical bars.

## Bar Spacing

This indicates the horizontal spacing of the vertical reinforcement entered above.

## Bar Depth

Enter the depth to the reinforcing steel. This depth will be used to determine moment capacity and moment of inertia.

## Analysis Method

In this section, the user specifies one of six design methods to be used throughout the calculation.

- 1989 UBC 2614(i) Exact, Non-Iterated This selection follows the UBC section 2614(i) method almost exactly for calculating deflections and moments. The method is non-iterative; the wall deflection used for P-Delta is calculated as the maximum deflection of the wall when it reaches failure. When we say follows almost exactly, we mean that the code does not mention that the maximum moment is never at the wall mid-height , doesn't consider partial length, moment, or point lateral loads, nor does it consider base fixity. This method is the formal code adaptation of the Green Book published by the Structural Engineers Association of Southern California, and was the result of an extensive testing program. This method goes beyond the UBC simplifications to include partial length lateral loads, lateral point loads, and any degree of base fixity.
- b This method is the same as above EXCEPT that deflections are iterated to calculate maximum wall deflections and moments. This is the most common of the six methods used.
- ACI Eq. 9-7 Iterate This method uses ACI equation 9-7 to calculate the moment of inertia for the entire wall. Starting with a deflection due only to lateral wind or seismic on the wall, deflections are repeatedly iterated and the increased moment due to P-Delta effects added to create still greater moments.
- ACI Eq. 9-7 Mx. Defl. This method uses ACI equation 9-7 to calculate moment of inertia, but uses a deflection that would result if the wall were about to fail from applied uniform loads. This yields the maximum possible deflection that could ever occur in the wall, which is then used to calculate a P-Delta moment.
- Using ICR Full Height Iterate This method is very conservative, using only ICRACKED for deflection calculations. Starting with a deflection due only to lateral wind or seismic on the wall, deflections are repeatedly iterated and the increased moment due to P-Delta effects added to create still greater moments.
- Using ICR Full Height Max. Defl. This method uses ICRACKED for the entire wall and uses a deflection that would result if the wall were about to fail from applied uniform loads. This yields the maximum possible deflection that could ever occur in the wall. This is the most conservative method of the five, and results in highly reinforced walls.

Adjust Moment when Thickness/2 <> Bar Depth
This flag tells the software whether to decrease the moment capacity of the wall section by the
internal moment produced when the rebar is not at the center of the wall. This is not common but some engineers do prefer to take this into consideration.

Normally the allowable moment would be calculated as:

## Mn=As:eff $\operatorname{Fy}(\mathbf{d - a} / 2)$

When this flag is checked then:

## Mn=As:eff Fy(d-a/2) - Pu (WallThk/2-Bar Depth)

f'c
Enter the 28 day compressive strength of concrete to be used.
Fy
Enter the allowable yield stress of the reinforcing to be used.
Phi
The user can enter a value for Phi (capacity reduction factor) for design. Typically .9 is used for inspected construction, 0.72 for uninspected. Most codes now do not allow uninspected values.

## Concrete Weight

Enter the concrete density to be used for calculation of vertical and seismic loads.

## Minimum Vertical Steel Percentage

Specify the minimum allowable percentage of vertical reinforcing for the wall. This will be used to determine the Maximum Vertical Spacing.

## Minimum Horizontal Steel Percentage

Specify the minimum allowable percentage of horizontal reinforcing for the wall. This will be used to determine the Maximum Vertical Spacing.

## Strip Width Used for Analysis

This does an analysis using a vertical "Strip" of wall that is used to carry the vertical and lateral loads. By default this strip is 12 " wide. If you have a larger width of wall, perhaps next to a door opening that is 18 " wide, you can enter that dimension in here. The program will divided the applied point vertical and lateral loads over this distance.

## Minimum Deflection Ratio

This is the minimum allowable ratio of Clear Height/Service Load Deflection.

## Loads / Vertical Loads Tab

```
General Loads \(\mid\) ACI Factors \(\mid\)
Vertical Loads |Lateral Loads \(\mid\)
```


## Vertical Loads...

```
Notel These Loads Applied to "Strip Width".
\begin{tabular}{|c|c|}
\hline Uniform DL & 100.00 \({ }^{*}\) \\
\hline Uniform LL & \(240.00 \frac{4}{7}\) \\
\hline ...eccentricity & 6.500 章 \\
\hline
\end{tabular}
```



```
Combine LL w/Short Term..... Г
```


## Moment of Inertia Magnifiers

```
\begin{tabular}{|c|c|}
\hline Seismic "I" Magnifier & \(1.00 \frac{2}{7}\) \\
\hline Wind "I" Magnifier & \(1.00 \frac{6}{7}\) \\
\hline
\end{tabular}
(Please leave both \(=1.0\) uniess you are sure!)
```


## Uniform Loads

This represents the vertical load applied to the wall in addition to wall weight, and will be applied at the eccentricity from the wall centerline as specified. When using an eccentricity it will always be additive to the moment between supports.

## Concentric Loads

This represents the vertical load applied to the wall in addition to wall weight. The program will apply it at the wall centerline, assuming no eccentricity. This load input is supplied in cases where significant load is being supported by the wall.

## Combine Live Load with Short Term

The designer must specify whether the applied live load should be combined with the dead load when evaluating the design. Typically when wind load governs it should be included.

## Moment of Inertia Magnifiers

These items are rarely used. To explain their purpose picture a tilt-up wall panel with a tall large opening. The jamb width is 24 " for $3 / 4$ of the walls height BUT the top $1 / 4$ will be stiffened by the large concrete area above the opening.

By examination it is obvious that the jamb strip will be slightly stiffer because of this effect. When you would like to see the effect a higher moment of inertia (stiffer) jamb strip would have on the calculated P-Delta moments you can enter a value here to be applied DIRECTLY to the calculated effective moment of inertia of the wall strip being used.

## Loads / Lateral Loads Tab



## Wall Seismic Factor

Enter the seismic factor to be applied to the wall weight for lateral loading. If you have calculated a seismic factor from the 1997 UBC or IBC that is an "Ultimate" value divide it by 1.4 before entering it here to get it to a service load level.

## Parapet Seismic Factor

Enter the seismic factor to be applied to the parapet weight for lateral loading. If you have calculated a seismic factor from the 1997 UBC or IBC that is an "Ultimate" value divide it by 1.4 before entering it here to get it to a service load level.

## Wind Load

Enter the wind load in PSF that should be applied to the wall.

## Point lateral Load

This load is applied to the 12" wide strip of wall in addition to the lateral load due to wind or seismic forces. It should be entered AFTER APPLYING A SEISMIC FACTOR. This additional lateral load is intended to enable the user to model a section of wall or jamb strip when additional loads are applied
to it.
For example, due to an adjacent lintel cast integrally with the wall which spans vertically between roof and a horizontal bond beam at the head of the opening.
This load is factored using ACI factoring for wind and seismic loads, depending upon your entry for Type: Wind/Seismic.

## ....height

Enter the distance from the bottom of the wall to the point of application of the concentrated point load.

## ....load type: Seismic/Wind

This specifies whether this added load is due to seismic or wind forces. It is needed so that the ACI load factors can include the additional 1.1" factor for seismic forces.

## Uniform Lateral Load

This load Is applied to the analysis of wall in addition to the lateral load due to wind or seismic forces. It should be entered AFTER APPLYING A SEISMIC FACTOR, if this is the case. This additional lateral load is intended to enable the user to model a section of wall or jamb strip when additional loads are applied to it, for example due to a horizontally spanning lintel cast integrally with the wall.

## Distance to Top

Enter the distance from the bottom of the wall to the upper end of the uniform lateral load. Please be sure to limit this input to a maximum of Clear Height, as the program cannot apply this load above the top support.

## Distance to Bottom

Enter the distance from the bottom of the wall to the start of the uniform lateral load.

## ...Load Type : Seismic/Wind

This specifies whether this added partial length uniform load is due to seismic or wind forces, needed so that the ACI load factors can include the additional 1.1 needed for seismic forces.

## Use Lateral Parapet Weight ?

This YES/NO flag specifies whether the parapet lateral wind and seismic load should be used. Answering YES will generate moments at the top of the wall that will decrease the maximum moments between supports.

## ACI Factors

This tab specifies the load factors to be used by the program when calculation the factored dead, live, and short term loads to be used in the internal load combinations for determining Mu for the wall.


## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results / Summary Tab

| Results \|Sketch | Printing| |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Wall Design OK |  |  |
| Factored Load Bending Analysi Maximum Iterated Moment : Mu | Seismic Load Governs 45,459.06 in-\# |  |
| Moment Capacity : Mn * Phi | 46,379.95in-\# |  |
| Service Load Deflection Analysi | Seismic Load Governs |  |
| Maximum Iterated Deflection . . . . . . . . . .Deflection Limit (Using (Specified Ratio) |  | 1.417 in |
|  |  | 2.080 in |
| Mn * Phi : Moment Capacity Applied: Mu @ Mid-Span Applied: Mu @ Top of Wall | Seismic | $\begin{aligned} & \text { Wind } \\ & 44,405.94 \mathrm{in}-\# \\ & 30,712.89 \mathrm{in}-\# \\ & 2,088.19 \mathrm{in}-\# \end{aligned}$ |
|  | 46,379.95 |  |
|  | 45,459.06 |  |
|  | 5,332.07 |  |
| Fa : Actual | 19.39 | 19.39 psi |
| Fa : Allowable | 120.00 | 120.00 psi |
| Actual As \% | 0.0055 | 0.0055 |
| UBC Allow. As \% = 0.6 * RhoBal | 0.0128 | 0.0128 |
| Maximum Service Load Deflection | 1.42 | 0.22 in |
| Service $\mathrm{Ht} /$ Deflection Ratio | $220: 1$ | 1,390:1 |

## Factored Load Bending Analysis

The results here are the maximum governing moments in the wall panel strip after an iterated P-Delta calculation is performed to include the effect of additional moments induced from the lateral bending of the wall.

## Maximum Iterated Moment

Using the design method specified, the factored loads are applied to the wall and deflections used to calculate maximum moments due to bending from the seismic or wind loads, added lateral loads, and P-Delta moments. This value is the Maximum Moment from P-Delta Analysis

## Moment Capacity : Mn * Phi

This wall capacity is calculated using wall thickness, reinforcing, and includes the effect of axial load to increase the effective area of tension reinforcement. Since axial load can vary between seismic and live load conditions, the ultimate moment capacity must be calculated for both cases.

## Service Load Deflection Analysis

The results here use service loads applied to the wall in an iterative P-Delta analysis until deflection convergence is reached where the moment is no longer increasing.

## Maximum Iterated Deflection

This is the maximum calculated wall panel deflection due to service loads for the design method specified. A method that calculates deflections at the moment capacity of the wall will give far greater deflections than for an iterated solution.

## Deflection Limit

This is the maximum allowable wall panel deflection calculated by entering the user defined "Max. Defl. Ratio" times the clear span of the wall.

## Mn * Phi : Moment Capacity

The capacity of the wall for seismic and wind conditions is shown. These values are different because of the different components of vertical loads that contribute to design strength.

## Applied Mu @ Mid-Span \& Top of Wall

This is a breakdown of the four calculated ultimate moments in the wall panel. Moments are calculated at the top of the wall due to eccentric vertical loads and lateral parapet loads and also at the mid-span for both wind and seismic loadings.

## Fa:Actual

This stress equals the vertical dead and live loads above mid-height. These loads are divided by Wall Thickness * 12 inches. For the UBC method, this stress should be limited to 0.04f'c.

## Fa:Allowable

For the UBC method, the allowable axial stress is limited to $0.04 f^{\prime}$ c. This value will not apply when the other methods are being used.

## Actual As \%

When the UBC method is used, the maximum allowable steel percentage is limited to 0.6 times the balanced percentage.

## Results / Wall Analysis Tab

This tab lists the results for the factored load moment analysis and the service load deflection analysis.

| Results \|Sketch | Printing| |  |  |
| :---: | :---: | :---: |
| Summary Wall Analysis Analysis Data\| | Add'l Values |  |
| For Factored Load Stresses | Seismic | Wind |
| Basic Defl w/o P-Delta | 0.452 | 0.285 in |
| Basic Moment w/o P-Delta | 30,212.26 | 19,031.14 in-\# |
| Moment Excess of Mcr | 25,741.04 | 10,994.88 in-\# |
| Max. P-Delta Deflection | 7.800 | 7.968 in |
| Max P-Delta Moment | 45,459.06 | $30.712 .89 \mathrm{in-} \mathrm{\#}$ |
| For Service Load Deflections | Seismic | Wind |
| Basic Defl w/o P-Delta | 0.323 | 0.224 in |
| Basic Moment w/o P-Delta | 21,580.19 | 14,983.74 in-\# |
| Moment Excess of Mcr | 4.766.37 | 0.00 in-\# |
| Max. P-Delta Deflection | 1.417 | 0.224 in |
| Max P-Delta Moment | 24.484.39 | 17,887.94 in-\# |
| Maximum Allow Vertical Bar Spacing |  | 18.000 in |
| Maximum Allow Horizontal Bar Spacing |  | 18.000 in |
| Parapet Bar Spacing Req'd : SEISMIC |  | 18.000 in |
| Parapet Bar Spacing Req'd : WIND |  | 18.000 in |

## Basic Defl. \& Deflection w/o P-Delta

This is the calculation of wall deflections and moments without any moment magnification from P-Delta effects. Only lateral seismic load, applied lateral load, and moments due to axial load eccentricity are applied in using a standard beam analysis.

Moment in excess of Mcr
This value is the moment in excess of Mcracked (which is the moment capacity of the wall when cracking in the tension region starts). This excess value is used in the calculation of the added deflections.

## Max P-Delta Deflection \& P-Delta Moment

This is the maximum calculated deflection of the wall after iterating P-Delta effects until there is no further increase in moment.

## Maximum Allowable Bar Spacing

These spacing values are the result of applying the "Min. Steel \%" entered on the "General" tab to the wall thickness.

## Parapet Bar Spacing

This is the maximum required spacing of the bar size you specified for the wall when examining the moment at the top of the wall due to wind or seismic loads on the parapet.

## Results / Analysis Data Tab

This tab shows various calculated values that are used in the wall analysis.

Results / Sketch $^{\text {Printing }}$ \|		
Summary/Wall Analysis Analys	Data Add'l Values	
E	. . . . . .	3122,018.6 psi
$n=E s / E c$		9.29
Ht / Thk Ratio		52.00
Sgross		72.000 in 3
Fr Multiplier for sqrt(fc)		5.00
$\mathrm{Fr}=$		273.86 psi
$\mathrm{Mcr}=\mathrm{S}^{*} \mathrm{Fr}$		19,718.0 in-\#
Rho: Bar Reinf Pct		0.0214
Values for Min Calculation...	Seismic	Wind
As:eff= [Pu:tot + AsFy]/Fy	0.265 in	0.257 in
$\mathrm{a}:(\mathrm{AsFy}+\mathrm{Pu}) /(.85 \mathrm{fc}$ b)	0.520 in	0.504 in
$\mathrm{c}=\mathrm{a} / .85$	0.611 in	0.593 in
Igross	216.000 in4	216.00 in 4
Icracked	21.46 in 4	21.01 in4
1-eff ( ACl methods only)	0.00 in 4	0.00 in 4
Phi: Capacity Reduction	0.900	0.900
$\mathrm{Mn}=\mathrm{As}$ : eff $\mathrm{Fy}(\mathrm{d}-\mathrm{a} / 2)$		
	51,533.27 in-\#	49,339.94 in-\#

E
The modulus of elasticity for concrete is calculated as:

$$
\mathrm{Ec}=57,000 * \mathrm{f}^{\prime} \mathrm{c}^{1 / 2}
$$

n
This is the ratio of Steel/Concrete elastic modulus. See later in this section for formula used to calculate "E".

## Ht / Thickness Ratio

This calculated value is a commonly referenced value that designers use to establish a panel's
thickness. It is equal to the Clear Height/Wall Thickness.

## S-gross

Gross section modulus for 12" of wall width: 12" * (Wall Thickness)2 / 6

Fr
The modulus of rupture is calculated by: $\mathrm{Fr}=5 * \mathrm{f}^{\prime} \mathrm{c}^{1 / 2}$
Mcr
The moment capacity of the gross wall section equals the gross section modulus times the modulus of rupture.

## Rho Balanced

This represents the balanced steel area required for simultaneous steel yield and 0.003 in concrete strain. This value will be used to calculate the maximum allowable steel percentage by the UBC method.

As (eff)
The effective area of steel used to calculate moment capacity and section properties is listed here. The area of steel reinforcing is increased to take into account the effect of compression on the section.
a
This is the typical ACI equation for determining the depth of the equivalent compressive stress block used for analysis.
c
This is the true compressive stress block depth calculated from the strain compatibility equations, letting concrete strain $=.003$ in and steel strain equals yield strain.

I-gross
Gross moment of inertia for 12 " of wall width:
12" * (Wall Thickness)3 / 12

## I-cracked

The moment of inertia for 12 " of wall width, considering a Cracked Section is taken as :
Icr $=n * \operatorname{As}(\mathrm{eff}) *(\mathrm{~d}-\mathrm{c}) 2+(4 * \mathrm{c} 3)$

## I-effective (Used for ACI methods only)

By using ACI equation 9-7 and the unfactored simple span and P-Delta applied moment, the effective moment of inertia to be used in calculating the wall deflections is obtained. When iteration is specified, this moment of inertia will converge closer to ICRACKED as the wall increasingly deflects outward. When deflection at moment strength is specified, Mn is used to calculate IEFFECTIVE.

## Phi

This capacity reduction factor is applied to the calculated moment capacity to take into account such factors as quality control, use, and design/analysis assumptions. This value is a restatement of the Phi value entered under the sub-section Design Data.

## Mn

This is the calculated maximum moment capacity of the section whose values for allowable stresses, reinforcing size and spacing, and effective area of steel.

## Results / Additional Values Tab



## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


## Sample Printout



ENERCALC Engineering Software
P.O. B ox 188

Corona del Mar, CA 92660
Voice: 949.645 .0151

Title: ENERCALC Example Problems Job \# 97-000001
Dsgmr: MDE
Date: $10: 59 \mathrm{PM}, 26$ OCT 03
Description : Collaction of exampla problems
Scope: All programs inthe Structural Engneering Likary

Fok: 8800 User: Kaw 0600001 , Wer 5 B.0. 10-Sep. 2009 (0) 1800-2000 BNERCA. EErinseing Sotvare	Tilt-Up Wall Panel Design	Page 2 chec55examples eca: Congrete Calcs

Description Flat wall strip w/ wind load


### 2.6 Shear Wall

This program provides complete vertical and lateral load design and analysis for concrete
shear walls up to five levels high. You can also design a rectangular footing supporting the wall, considering all moments, shears, and axial loads.

The program allows input of five different wall sections, each with its own base height, section height, length, offset, thickness, and material strengths. Up to ten lateral short-term loads and up to ten vertical dead, live, and short term loads can be applied to the entire wall system. The vertical and horizontal position of each load can be specified.

Concrete density and lateral weight factors can be entered to define the vertical weight and portion of vertical weight used as a generated lateral short-term load. This frees you of constantly recalculating vertical and lateral wall weights as you refine your wall and footing designs.

The program calculates shears and overturning forces for the base of each of the five wall sections, and determines required shear and bending reinforcement. Lateral loads are applied in each direction to determine the maximum moments (due to centerline offsets of portions of the wall above).

Each vertical load represents a concentrated load acting on the wall. This load is included in the shear design of the wall by providing an axial load which combines with the allowable shear equations. This load is included in the calculations for overturning moment on a wall section when it is eccentric to the centerline of the wall at that particular section.

The program also provides analysis and design capability for rectangular footings located under the wall. Total overturning forces are calculated about the bottom of the footing (with force due to wall weight included), and resultant service and factored load soil pressures are determined. The program automatically checks cases when the vertical resultant is outside the kern distance for soil pressure calculations. Also, overall overturning stability ratios are found.

A final calculation for one way shear stresses and moments at each end of the wall is performed by applying vertical loads only, vertical+lateral load to the left, and then to the right. Minimum reinforcement due to maximum moments is determined.

Multi-Story Shear Wall Design


## Basic Usage

- It is critical that the user understands the concept of the various ANALYSIS HEIGHTS which are used to define the bottom of each wall section. This provides the ability to have an analysis performed at any height above a datum. Also, when walls support more than five floors, the top of the wall lateral and vertical loads can be entered to apply the axial, shear, and moment loads from the elements above.
- General Data allows you to enter dimension and load combination data for the entire wall. Total Height specifies the top most height of the wall. Concrete Weight and Lat. Weight Factor define the vertical and lateral loads to use for automatic application of forces due to the wall's weight. You can specify whether to Include Live Load with short-term loads (typically not for seismic design), and set a minimum reinforcing area to be used for wall bending calculations.
- Lateral Loads are applied to all wall sections by specifying the load and height above the base level. This provides entry of simple point lateral loads to the wall, simulating a lumped diaphragm force. This load must not include ACI load factors, but any seismic factors should already have been applied to loads..
- Vertical Loads are applied to the wall by specifying the dead, live, and short-term components of each load. Each load has its own vertical and horizontal location which is used to calculate overturning moments and axial stress at each wall level.
- Analysis Height and Wall Thickness, Offset, and Length are entered to define the vertical and horizontal position of each of the five wall sections. You can also enter
the concrete and reinforcing strength of each section separately. Please see illustration above. Calculate the calcsheet and review the Story Shears, Moments, and Uplift at the ends of the base section. These values consider all vertical and lateral loads, including vertical and horizontal wall weights generated by the program.
- You can now review the Shear Analysis and Bending Analysis to determine if any changes need to be made in wall thicknesses or lengths to satisfy stress and reinforcing requirements.
- Continue to enter the Footing Design Values, which include material strengths, width, thickness, and projection beyond each end of the base wall section. Using these projections and the base wall length entered previously, factored load soil pressures, reinforcing requirements, and shear stresses will be calculated.
- To refine your Soil Pressures and Footing Design, modify the footing dimensions as necessary. The program will automatically calculate factored soil pressures, shears, and moments for ACI combination equations 9-1, 9-2, and 9-3 for lateral loads applied in both directions.


## Unique Features

- This program provides a convenient method of designing a complete shear wall and footing system at once. The tedious task of estimating wall lengths, thicknesses, and footing size is performed is one step.
- This program can be used in instances where the designer must consider rigidities for multi-story structures with multiple shear walls that are all connected with a rigid diaphragm. This program can quickly provide excellent information for preliminary and final wall sizes.
- Vertical and lateral loads can be applied freely, and the lateral loads are applied in both directions to determine maximum moments, shears, uplift, and soil pressures.


## Assumptions \& Limitations

- Limited loadings are available, so loads should be combined and positions adjusted when more individual loads are acting than the program input permits.
- Wall weight is automatically calculated and added to the applied vertical loads and lateral loads.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab



## Total Wall Height

Enter the total height of the wall. This height is used by the program to determine the total height that the topmost Analysis Height wall section should extend to for determining the weight of that uppermost section.

## Concrete Weight

Enter the unit weight of concrete that should be used for wall and footing weight calculations.

## Include LL \& ST

This entry instructs the program when to include live load with short-term loads. Typically, wind load analysis will include live loads, while short-term loads due to seismic forces are not combined with live loads.

## Seismic Factor

This factor is applied to the weight of each wall section and the resulting force is applied laterally at the center of gravity of each wall. This should be used for seismic analysis only, and is commonly called the Seismic Factor which applies only to portions of structures.

## Seismic Zone

This entry is used to control overall ACI load factoring. When wind loads generate the short-term forces, enter a 0 " here. When seismic loads generate the short-term loads, enter 1" through 4 " here to indicate the UBC seismic zone. When zone 3 or 4 is used, the special load factoring provisions of the UBC are applied. When 1 through 4 is used, this factor will be applied to the weight of each wall section and applied as a lateral load at the wall section centroid to account for the lateral seismic force created by the wall's own weight.

## Min. Wall As \% for Bending

This indicates the minimum wall reinforcement percentage to be used for determining bending reinforcement. Typically this will be set to 0.0025 (per ACI for shear walls).

## Analysis Height

This is the user-defined height at which the analysis of a particular wall section will be performed. All moments, shears, and vertical loads at this height will be calculated using all applied lateral and vertical loads and the wall self weight above this point. The other wall data items specified in the calcsheet column will be used between this analysis height and the next higher level in the column to the right.
ALWAYS WORK WITH THE HIGHER ANALYSIS HEIGHT IN THE COLUMN TO THE RIGHT OF A LOWER HEIGHT. This is needed due to the manner in which the program calculates the heights by comparing heights of adjacent sections.

## Wall Offset

Please refer to the diagram to further understand this item. Because this program can be used with a walls that have their length changes with height, you must enter the offset from the bottom wall section to the LEFT EDGE of the wall section. This enables the program to calculate the actual X-Distance to the center of gravity of the wall.

## Wall Length

Enter the length to be used in the analysis of the particular wall section. Please note that if the Wall length + Offset is greater than the Wall Length + Offset for the level below, this indicates that the section OVERHANGS the section below it. This is not allowed.

## Wall Thickness

Enter the thickness to be used in the analysis of a particular wall section. This thickness will be used only between the Analysis Height for that section up to the analysis of the next higher section (or Total Wall Height if it is the highest section).
f'c
Enter the concrete compressive strength to be used in the wall calculation for a particular wall section. This does not apply to the footing, which has it's own input area for material strengths.

Fy
Enter the steel yield stress for the reinforcing to be used in the wall analysis. Please note that this value applies to BOTH shear and moment reinforcing.

## d :Effective Depth

The program considers the effective shear length of the wall to be $0.8^{*}$ wall length. If you leave this entry blank, it will be filled in for you by the program.

## Lateral Loads Tab

Enter the unfactored lateral loads applied to the wall. Do not apply load factors to this number; it should represent the actual lateral load for design loads (apply seismic factor to gravity loads BEFORE entering). The Height entry will specify the height at which the load is applied to the overall wall system above the top of footing, and the program will automatically determine which wall section it is applied to. This load would typically represent the total diaphragm load going into the wall at a particular level.

All lateral loads will be applied in both left and right directions; assigning a sign to them will be meaningless. Applying the loads in each direction enables this program to provide a complete analysis of the wall system for all possible combinations of loads.


## Vertical Loads Tab



## Loads

Enter the unfactored vertical point loads applied to the wall. These loads represent gravity loads being supported by the wall at various heights. The load may have dead, live, and short term components.

## Load Location

This location is in reference to the lower left edge of the bottom wall section. By entering the coordinates of the load from this position, the program will automatically determine which wall section the load is applied to. These vertical loads are used in all calculations.

## ACI Factors Tab

This tab specifies the load factors to be used by the program when calculation the factored dead, live, and short term loads to be used in the internal load combinations for determining Mu and Vu.


## Footing Tab

General｜Lateral Loads／Vertical Loads｜ACIFactors	Footing
Allowable Soil Pressure	$5,00000 \frac{4}{7} \mathrm{psf}$
Distance＠Left	$8.000 \stackrel{4}{\text { ¢ }} \mathrm{ft}$
Wall Length	14.000 ft
Distance＠Right	$8.000 \stackrel{⿻ 上}{\underline{3}} \mathrm{ft}$
Footing Length ．．．．．．．．．．．	30.000 ft
Width	
Thickness	48.00 䨌 in
$f \mathrm{c}$	3，000．0 $\frac{4}{7} \mathrm{psi}$
Fy	60，000．0 $\frac{4}{7} \mathrm{psi}$
Rebar Cover	3.500 考 in
Minimum Steel Reinf．Percentage	0.0014
Kern Width	5.000 ft

## Allowable Soil Pressure

Enter the maximum allowable soil bearing pressure that can be sustained by the soil.

## Distance @ Left

Enter the distance the footing extends past the left end of the bottom most shear wall section.

## Wall Length

This value is repeated from the "General" tab so that you know the proportions of footing length.

## Distance @ Right

Enter the distance the footing extends past the left end of the bottom most shear wall section.

## Footing Length

This value is calculated as the two "distance" projections plus wall length.

## Footing Width

Enter the footing width to be used in the analysis. This width may be modified at any time for optimizing design.

## Footing Thickness

Enter the footing thickness to be used in the analysis. This thickness may be modified at any time for optimizing design.
f'c
Enter the concrete compressive strength to be used in the footing calculation.
Fy
Enter the steel yield stress for the reinforcing to be used in the footing analysis.

## Rebar Cover

Enter the cover over tension reinforcing which will be placed in the bottom of the footing. This distance will be subtracted from footing thickness to obtain the d to be used in calculating RU for the footing and for one-way shear calculations.

## Kern Width

The kern distance is equal to footing length divided by 6 . The "kern" region is the area in the center of the footing where the resultant of upward soil pressure can be and still maintain full pressure under the entire footing. This area extend Length/6 on either side of the center of the footing.

If the resultant lies outside this area the footing will be under partial compression and the soil pressure diagram will be triangular.

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Wall Results Tab

Wall $\mid$ Footing $\mid$ Soil, Stability Sketch \| Printing					
Wall Analysis....	Bottom 2 n	nd Level	3 rd Level	4th Level	5th Level
Vs : Story Shear .	34.37	28.28	20.89	11.79	1.74 k
Ms w/ Lat Right	2.026 .4	1,157.0	653.8	75.8	8.7 k-ft
Ms w/ Lat Left	-1,179.6	-781.6	-341.5	-151.6	-8.7 k-ft
Uplift @ Left End	0.00	0.00	0.00	0.00	0.00 k
Uplif @ Right End	0.00	0.00	0.00	0.00	. 23.05 k
$\mathrm{V}_{\mathrm{u}}=\mathrm{V}_{\mathrm{s}}$ * Factor(s)	70.377	52.634	36.143	18.942	2.436 k
vu: Applied	43.64	50.77	58.83	986.56	126.87 psi
vc *. 85	69.7	70.7	81.6	93.3	156.6 psi
un:max $=6^{*} 10^{*}$ sqrt(fic)	328.634	328.6	328.6	328.6	328.6 psi
Horizontal As Req'd..	0.36	0.36	0.24	1.43	0.24 in 2
Vertical As Req'd.....	0.36	0.36	0.24	1.43	0.24 in2
Nu: Axial	433.02	344.24	203.36	102.95	8.12 k
Mu: Actual	2.729 .1	1.577 .2	872.7	263.5	12.2 k-ft
Bending As Req'd	5.38	4.26	2.66	999.00	999.00 in 2
Footing Analysis....					
Max. Service Soil Pressure				4,591.75 psf	
Max. Footing Shear Allowable				58.57 psi	
Max. Bending Moment				1,166.17 k-ft	
Required Steel Area				7.92 in 2	
Min. Overturning Stability Ratio				3.21 :1	

## Vs: Story Shear

This value is the summation of the lateral forces applied at and above the Analysis Height for a particular section.

## Ms : Story OTM

This value is the summation of the overturning moments induced from loads applied above the Analysis Height. Included are applied lateral loads, Wall Section Weight * ZIKCS, and applied vertical loads that are not at the center of the wall.

## Uplift

This value first calculates the moments created by the applied lateral loads, vertical loads, wall weight, and lateral wall weight overturning the wall about the base. If overturning stability is not satisfied, the net moment is divided by ( Wall Length $-1^{\prime}-0$ " ) to obtain this number. Depending on the actual placement of tension reinforcing, multiply this force by Actual d/Wall Length to arrive at an adjusted force.
The lateral loads you have entered are combined with the calculated lateral wall weight loads and applied in both directions to get the maximum uplift at either end. Since the program allows general placement of vertical loads and offset walls, an analysis of both directions must be performed.

## $\mathbf{V u}=\mathbf{V s}$ * Factor(s)

This is equal to the Vs:Story Shear times the Load Factor specified in the loading table plus the lateral wall weight times 1.05 or 1.275 for seismic or wind cases.

## Shear Analysis

Vu:
Applied To determine the actual factored unit shear at the wall section, Vu is divided by wall thickness and d.

## Vc *. 85

Calculated using UBC equations 11-32 and 11-33 (if applicable). These formulas consider the effect of axial load on shear stress.

## Nu : Axial

This value is used in determining the allowable unit shear stress. Vertical loads and wall weight above the Analysis Height are combined with load factors to arrive at this axial load.

## Mu:Moment

All lateral and vertical loads above the Analysis Height are combined with load factors to calculate the actual moment acting at the base of each wall section.

## Code Min. Area \%

If Phi * VU < VC/2, then Horiz $\%=0.002$ and Vert $\%=0.0012$
If Phi $* \mathrm{VU}>=\mathrm{VC} / 2$, then Horiz $\%=\operatorname{MIN}(0.0025,(\mathrm{VU}-\mathrm{VC}) /$ area
Vert \% per ACI 11-35, 0.0025

## Shear Area Req'

This is the shear reinforcing required per foot of wall to resist the shear forces.

## Bending Analysis

Ru
The resisting modulus of the section is calculated using the wall thickness, steel depth equal to 0.8 * Wall length, and $\mathrm{Phi}=0.9$.

## As Req'd Each End

Area of tension reinforcement required at each end of the wall to resist bending forces.

## Footing Results Tab



## Overturning Stability

Overall stability is calculated by including the footing weight with moments due to vertical and lateral loads about each end of the base of the footing. For load applied to the left, moments are taken about the left edge of the footing and vice versa.

## One-Way Shear Check

For both of the following shear checks, Vc:Allow is calculated using: Vc = $2 * \mathrm{f}^{\prime} \mathrm{c}^{1 ⁄ 2} 2 * .85$

## Bending Design

Min. As
Enter the minimum allowable steel percentage you wish the program to use when finding the area of steel required.

## Mu: Moment

The maximum moment acting on the footing due to factored soil pressures is calculated at the edge of the wall. The moment due to footing weight is subtracted from the soil pressure moment to determine this actual maximum moment.

## Ru

Resisting modulus due to applied moment.

## \% As Required

The required steel percentage is calculated by first finding the required steel area due to bending moments:
$\%$ Req'd $=(1 / m) *\left(1-[1-(2 * m * R u) / F y)^{1 / 2}\right]^{1 / 2}$
If this area is greater than 200/Fy then it is compared to your Min AS \% value and the larger used. If it is less than 200/Fy, it is multiplied by 1.33 and again compared to $200 / \mathrm{Fy}$. The minimum of those two values is then compared to your Min AS \% value and the larger used

## As: Required

This is equal to the As\% value calculated previously multiplied by the width and d distances of the footing.

## Soil \& Stability Tab

| Wall $\mid$ Footing Soil, Stability ${ }^{\text {S }}$ | ketch \| Printing| |  |  |
| :---: | :---: | :---: | :---: |
| Soil Pressures | Service |  | ACl Eq. C-1 |
| Static Soil Pressure @ Left | 1,909.23 psf |  | 2,801.50 psf |
| Static Soil Pressure@ Right | 2,238.52 psf |  | 3.190 .69 psf |
| ACIEq. C-2 \& C-3 |  |  |  |
| Soil Pressures w Short Term Load Applied To Left |  |  |  |
| @ Left Side of Footing | 3.607 .92 psf |  | 5,365.31 psf |
| @ Right Side of Footing | 539.83 psf |  | 1,069.99 psf |
| Soil Pressures w Short Term Load Applied To Right |  |  |  |
| (a) Left Side of Footing |  | psf | 0.00 psf |
| @ Right Side of Footing | 4,591. | psf | 6,692.45 psf |
| Wall \& Footing Stability... |  |  |  |
|  | Service Loads | ACIC-1 | ACIC-2 \& C-3 |
| Total Vertical Loads | 373.30 | 539.30 | 579.18 k |
| Overturning Moments... |  |  |  |
| No Lat. or S.T.Loads | 148.18 | 175.13 k-ft |  |
| Lat \& ST Loads to Left | 1,380.64 |  | 1,932.89k-ft |
| Lat \& ST Loads to Right | 2,227.44 |  | 3,118.42k-ft |
| Resultant Ecc. Fom Centerine... |  |  |  |
| No Lat. or S.T. Loads | 0.397 | 0.325 ft |  |
| Lat \& ST Loads to Left | -3.698 |  | -3.337t |
| Lat \& ST Loads to Right | 5.967 |  | 5.384 ft |

## Wall/Footing Stability

This section provides a table of information on the overall stability and pressure resultants for the wall/footing system. To determine the maximum conditions, three lateral load analyses are performed; no lateral load at all, lateral load applied to the left, and lateral load applied to the right. This satisfies all load combinations as far as direction of forces is concerned.

For each of these force directions, ACI load factor combinations 9-1, 9-2, and 9-3 are evaluated. This results in a set of eccentricities for all possible conditions which will be used to determine factored soil pressures for footing design.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


## Sample Printout

ENERCALC Engineering Software
P.O.Box 188

Corona del Mar, CA 92660
Voice: 949-645-0151
www.enercalc.com

Title: ENERCALC Example Problems Job \# 97-000001
Dsgmr: MDB Datec $11.04 \mathrm{PM}, 26$ OCT 03
Description: Colection of example problems
Scope: All programs in the Structural Engineering Lbrary

Rev: 50000 Uher: Kub0000001, Ver 5.80. 10-Sep-2003 (e) 1883.2009 Evead Calc Engneeting Sotware	Concrete Shear Wall Design	Page 1 cises5uramples $x$ we cencreve cates

Description 4 Story Wall with setbacks



Summary	Bottom	2nd Level	3 rd Level	4th Level
Vu	63.48 k	45.73 k	30.92 k	15.39 k
Horizontal As Req'd	0.36 in 2	0.36 in 2	0.24 in 2	$0.19 \mathrm{in2}$
Vertical As Req'd	0.36 in 2	0.36 in 2	0.24 in 2	0.12 in 2
Mu: Actual	2.414 .37 k -ft	1.174 .17 k -ft	639.24 k -ft	246.96 k -ft
Bending As Req'd	5.38 in 2	3.46 in 2	2.05 in 2	130 in 2


Footing			
f' 3 , 000.0 ps		F ooting Dimensions	
Fy 60.000 .0 ps		Dist Left	6.000 f
Rebar Cover $\quad 3.500$ in		Dist. Right	14.000 f 6.000 ft
Footing Thickness $\quad 32.00$ in		Total Ftg Length	26.000 ft
Wiath 6.000 ft		Kern Wicth	4.333 ft
Wall \& Footing Stability...			
	Selvice Loads	ACIEC. ${ }^{\text {c- }-1}$	ACIEq.C-2\&C-3
$\begin{array}{lll}\text { Totar Vertical Loads } & 348.28 \mathrm{~K} & 508.45 \mathrm{~K} \\ \text { Overtuming Moments.. } & 111.16 \mathrm{k} & 544.16 \mathrm{~K}\end{array}$			
No Lateral or Short Term Loads	111.16 k - t	11809 k -	
Lat \& ST LoadsAppliedto Left	1,121.34 k-ft		1,569.87 k-ft
Lat \& ST Loads Applied to Right	$1.909 .26 \mathrm{k}-\mathrm{ft}$		2,672.96 k-п
Resultant Ecc. FomCenterline...			
No Lateral or Short Term Loads	0.319 ft	0.232 ft	
Lat \& ST LoadsApplied to Left	-3.220 ft		-2.885 \#t
Lat \& ST Loads Appliedto Right	5.482 ft		4.912 ft
O verall Wall \& Footing Stability			
Overturning Stability	Overturning Moment	Resisting Moment	Stability Ratio
Lateral Loads A pplied to Lett	$1,383.71 \mathrm{k}$ - At	5.446 . 86 k -ft	$3.936: 1$
Lateral LoadsAppled to Right	1,38371 k-tt	4,658.94 k-tt	3.367 : 1
One-Way Shear Check   Q Left End of Footing	68.419 psj	Alowable	113 ps


Q Left End of Footing   Q Fight End of F ooting	$\begin{aligned} & 68.419 \mathrm{psi} \\ & 86.257 \mathrm{psi} \end{aligned}$		Alowable	93.113 ps
ending iosuig	Mu	Ru	As \% Req'd	As Req'd
Q Left End of Footing	588.95 k - t	134.27 ps	0.0031	6.277 in2
@ Right End of Footing	740.82 k - t	168.50 ps	0.0033	6.840 in 2

Soil Pressures


### 2.7 Square Footing

This program provides design analysis for square footings subjected to axial load only. If you wish to design a rectangular footing subjected to axial loads and overturning
moments about one or both axis, the "General Footing" program is required.
Each footing may have a dead, live, and short term axial load applied, have soil overburden weight included, and you may choose to omit live load during short term load combinations.

Allowable soil pressure and a short-term allowable increase factor is used to check soil pressures, and the program also allows you to specify allowable soil pressure increases based on footing size and placement depth.

The program calculates actual soil pressure for static and short-term loadings, one and two-way shears, and calculates required reinforcement using the factored soil pressures.


## Basic Usage

- Dead, Live, and Short-Term loads are entered as loads applied to the footing (no horizontal shear or overturning moments are allowed with this program). Entering the Seismic Zone will instruct the program how to factor the short-term loads. Entering 0" will signal that short-term loads are wind loads, and 1" through 4" indicates zones. Overburden Weight will be applied as a dead load (for example assuming soil, concrete, or other static material), and you can specify to Include Live Load with short-term loads (typically combined for wind but ignored for
seismic).
- Footing Width, Thickness, and Material Strengths will be used to evaluate footing weight, pressures and shears. If Rebar Size and Quantity are entered, the program will calculate the moment capacity of the footing, otherwise it will provide design analysis and reinforcing requirements.
- Soil Data is entered to define the allowable soil bearing pressure for static (DL+LL) and short-term (DL+LL+ST) load combinations. By entering the footing depth and Allowable Increases, you can simply modify footing dimensions and have the allowable pressures automatically modified.


## Unique Features

- Up to six footings can be designed at one time on one program calcsheet, allowing fast design of dozens of footings.
- The program can both analyze and design steel reinforcing
- Allowable soil pressure increases based on depth of embedment and width can be automatically calculated whenever footing dimensions change.
- Program checks both beam and punching shear.


## Assumptions \& Limitations

- Only a square footing can be designed using this program.
- One and two-way shear and moments are calculated using the equivalent column dimension.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab



## Footing Square Dimension

Since only square footings can be designed, the length and width must be identical.

## Thickness

Total footing thickness.

## \# Bars

You can enter the size and number of bars in your footing for analysis of a footing, or allow the program to calculate this for you (see Reinforcing). If you specify the reinforcing, the program will automatically determine the bending capacity.

## Bar Size

Bar Size \#3 thru \#18 bars are allowed.

## Rebar Cover

Distance from the bottom of the footing to the centerline of the reinforcing.

## Column Dimension

Enter an equivalent column square dimension to be used for calculation of moments and shears.

## Allowable Soil Bearing

Enter the allowable soil pressure for static loadings.
f'c
Concrete compressive strength.

## Fy

Yield stress of reinforcing steel.

## Concrete Weight

By entering a non-zero number here, the weight of the footing will be included in soil bearing pressure calculations. Enter this number in PCF.

## Load Duration Factor

This factor will be applied to the Basic Allowable Soil Pressure to calculate allowable pressure under short-term loads.

## Seismic Zone

This entry is used to control overall ACI load factoring. When wind loads generate the short-term forces, enter a 0 " here. When seismic loads generate the short-term loads, enter 1 " through 4 " here to indicate the UBC seismic zone. When zone 3 or 4 is used, the special load factoring provisions of the UBC are applied.

## Min Allow \% Reinf.

## Loadings Tab

General Loadings Depth \& Width Increases	ACl Factors
Loading...	
Dead Load	
Live Load	$36.00 \stackrel{\text { 考 }}{ } \mathrm{k}$
Short Term Load	$12.00 \frac{4}{7} \mathrm{k}$
Overburden Weight	$110.00 \stackrel{\text { 考 }}{ } \mathrm{psf}$
Combine LL wi ST ? .............	$\Gamma$

## Loads

Each footing can support a dead, live, and short-term load. The load is applied to the center of the footing (no eccentricities are allowed).

## Overburden Weight

This represents an applied uniform dead load over the footing. It can be from soil, concrete slab, or storage loads.

Combine LL \& ST?

This entry instructs the program when to include live load with short-term loads. Typically, wind load analysis will include live load, while short-term loads due to seismic forces are not combined with live loads.

## Depth \& Width Increases Tab



## Footing Base Depth Below Surface

Enter the depth of the bottom of the footing below the adjacent soil. This item will only need be entered if you wish to use the Depth Increase capability.

## Increase per foot of Depth

These two values define how the soil pressure will be increased when increases based on depth are used. When Below defines the minimum depth of the footing below the soil for the increase to take effect. Per Foot Depth is the allowable pressure increase per foot of additional embedment greater than the minimum value.

## Increase per foot of width

These values define how the soil pressure will be increased when increases based on footing width are used. When Wider defines the minimum footing width of the footing for the increase to take effect. Per Foot Width is the allowable pressure increase per foot of additional width beyond the minimum value.

## ACI Factors

This tab specifies the load factors to be used by the program when calculation the factored dead, live, and short term loads to be used in the internal load combinations for determining $\mathrm{Mu} \& \mathrm{Vu}$.

| General \|Loadings | Depth \& Width Increases | ACl Factors |
| :---: | :---: |
| Load Factors (Nomenclature per ACl | 18-02 Appx C) |
| $\mathrm{ACl} \mathrm{C-1} \mathrm{\&} \mathrm{C-2} \mathrm{Dead} \mathrm{Load}$ | 1.400 |
| $\mathrm{ACIC}-1 \& \& \mathrm{C}-2$ Live Load | 1.700 |
| $\mathrm{ACI} \mathrm{C-1} \mathrm{\&} \mathrm{C-2} \mathrm{Short} \mathrm{Term}$ | 1.700 |
| $\ldots .$. seismic $=$ ST ${ }^{\text {* }}$ | 1.100 |
| ACI C-2 Group Factor | 0.750 |
| ACl C-3 Dead Load Factor | 0.900 |
| $\mathrm{ACl} \mathrm{C-3} \mathrm{Short} \mathrm{Term} \mathrm{Factor}$ | 1.300 |
| Add'l Seismic "1.4" Factor | 1.400 |
| Add" Seismic "0.9" Factor | 0.900 |

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Summary Tab

Summary Sketch		
Footing OK		
Soil Pressures...		
Max. Static Soil Pressure		2,235.69 psf
Allow Static Soil Pressure		2,500.00 psf
Max. Short Term Soil Pressure		1,569.03 psf
Allow Short Term Soil Pressure		3,325.00 psf
Shear Stresses..		
Actual 1-Way Shear		43.19 psi
Allowable 1-Way Shear		76.03 psi
Actual 2-Way Shear		129.93 psi
Allowable 2-Way Shear		152.05 psi
Bending Analysis...		
Mu : Actual		12.20 k -f/tt
Mn * Phi : Capacity		16.74 k -f//tt
Rebar Requirement		
Actual Rebar "d" depth used		11.375 in
200/Fy		0.0050
As Req'd by Analysis		0.0027 \%
Min. Reinf \% Required		$0.0036 \%$
Required Reinforcing		2.946 in2
As to USE per foot of Width		0.491 in2
Number of Bars Required	Total As Req'd $=$	2.946 in2
15: \#4's 7: \#6's	4 : \#8's	3: \#10's
10:\#5's 5:\#7's	3: \#9's	

## Max. Static Soil Press

This is the soil pressure due to dead, live, and overburden loads, and should not exceed the Allowable Static pressure.

## Allow Static Press

This soil pressure is equal to the Basic Allowable soil pressure when depth and width increases are not used. When you have specified depth or width increases, and the footing is either wider or deeper enough for them to be used, this value will reflect those additions.

## Max. Short Press.

This is the soil pressure due to dead, short term, overburden loads, and optional live loads. This pressure should not exceed the Allowable Short pressure.

## Allow Short Press.

This is equal to Allowable Static Pressure described above multiplied by the Short Term Factor.

## One Way Shear

This is the maximum one-way shear due to factored loads for both static and short-term conditions. The shear is calculated at a distance $d+$ Col. Dim/2" away from the footing centerline.

## Two Way Shear

This is the maximum two-way (punching) shear due to factored loads for both static and short-term conditions. The shear is calculated at a distance $\mathrm{d} / 2+\mathrm{Col}$. Dim/2" away from the footing centerline.

## Mn

This is the allowable bending capacity of the footing using the reinforcement optionally specified earlier. If the reinforcing was not entered, you can review the reinforcement calculations below for minimum requirements.

## Mu/Phi

This is the maximum actual moment in the footing due to static or short-term load combinations.

## Reinforcing

The required steel percentage is calculated by first finding the required steel area due to bending moments: \% Req'd $=(1 / \mathrm{m}) *\left(1-[1-(2 * m * R u) / F y)^{1 / 2}\right]^{1 / 2}$
If this area is greater than 200/Fy then it is compared to your Min AS \% value and the maximum used. If it is less than 200/Fy, it is multiplied by 1.33 and again compared to $200 / \mathrm{Fy}$. The minimum of those two values is then compared to your Min AS \% value and the larger used

Total As Required
This is equal to the As\% value calculated previously multiplied by the width and d distances of the footing.

## Rebar Choices

This section lists the reinforcing choices that will supply the required area.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Sample Printout

ENERCALC Engineering Software	Title: ENERCALC Example Problems
P.O. Box 188	Dsgnr: MDB
Corona del Mar, CA 92660	Des cription: Collection of example problems
Voice: $949-645-0151$	
www.enercalc.com	Scope: $\quad$ Al programs in the Structural Engineering Library


Rev. 880000   User KWW-0000001. Ver 5.8.0. 10. Sep-2003   (c) $16 E 32003$ ENERCALC Engnearing Software	Square Footing Design	Page 1 «ie ossolexamples.ecw:Conate Ca as


General Information		Code Ref. ACl 318-02, 1997 UBC, 2003 IBC, 2003 NFPA5000	
Dead Load	34.000 k	Footing Dimension	6.000 ft
Live Load	36.000 k	Thickness	1500 in
Short Term Load	12.000 k	\# of Bars	7
Seismic Zone	4	Bar Size	${ }^{6}$
Overburden Weight	110.000 psf	Rebar Cover	3250
Concrete Weight	145.00 pcf	$\mathrm{fc}^{\text {c }}$	2,000.0 psi
LL \& ST Act Separately		Fy	$40,000.0 \mathrm{psi}$
Load Duration Factor	1.350		
Column Dimension	8.00 in	Alowable Soil Bearing	2500.00 psf



### 2.8 General Footing

This program provides a complete and detailed analysis of rectangular footings subjected to axial, horizontal shear and moment loads about one or both axes. The program can also handle:

- Biaxial bending analysis, moments, shears, and eccentric loads can all be combined simultaneously to calculate maximum soil pressures at the footing corners.
- The column can be specified to be off-center from the footing centerline, resulting in calculated soil pressures, shears, and moments being taken at the offset column's perimeter.
- Overburden dead load to account for loads surcharging the footing.
- Lateral loads applied along one or both axes to produce overturning moments due to their eccentricity above the bottom of the footing.
- Dead, live, and short-term moments applied about one or both axis.
- Specification of seismic zone to indicate whether wind loads, or seismic loads are being used, and if the special load factoring provisions of the UBC should be used for seismic zones 3 and 4.

A column pedestal and equivalent column dimensions can be entered to identify location of shear transfer to footing and dimensions used to calculate beam and punching shear stresses.

The user can select whether the analysis should be performed by applying lateral and moments separately about both axes, or if a full biaxial soil pressure/shear/moment analysis is required. When a biaxial analysis if performed, skew bending theory is correlated with Esling's equations to generate a neutral axis and soil pressure matrix at 2,500 points under the footing. This pressure grid is then used to calculate maximum shears and moments.

Final calculations give results for ACI load factor combination equations 9-1, 9-2, and 9-3 simultaneously. One way shears, two-way shears, bending moments, reinforcing requirements at all four sides, and overturning stability ratios about both axes are given.


## Basic Usage

- Soil Pressure and Increase Factor specify the allowable soil bearing pressure to compare with analysis values. Base Pedestal Height defines the height at which all shears will be applied. Seismic Zone sets the ACI load factoring for equation 9-2 and $9-3$. Overburden Weight is considered to be a dead load applied to the top of the footing (but excluding the column area). You can set the Biaxial Analysis flag to indicate whether or not the complex biaxial analysis procedures should be used, applying all lateral loads and moments to the footing at once.
- Axial Loads are allowed to be applied by dead, live, or short term (but must be a positive + sign). The short-term load will be factored based on the Seismic Zone. Using the $X$ Ecc. and $Y$ Ecc. entries, you can shift the axial load application point off the column centerline, applying an additional moment to the footing.
- Footing Dimensions can be entered, along with the equivalent column dimensions, which will be used to calculate one and two way shear stresses.
- Y-Y and X-X Axis Forces allow you to apply service (unfactored) shears and moments to the footing. Dead, live, and short-term components are allowed, and the values can be either negative or positive.
- It is CRITICAL that you establish an X-Y coordinate system before entering footing dimensions, applied shears and moments, and axial load eccentricities. We have used this convention:
- $\operatorname{Top}=+Y \quad$ Bottom $=-Y \quad$ Right $=+X \quad$ Left $=-X$
- Calculating the program will determine the actual service and factored soil pressures, moments and shears, and required reinforcing. You can then modify footing sizes to obtain optimum designs.


## Unique Features

- User can apply moments and shears about two axes and have maximum and minimum soil pressures, one way shears, and bending moments evaluated for each side of the footing.
- Axial load can be applied eccentrically from the footing centerline.
- Full biaxial analysis combination of shears and moments about each axis is provided.
- Footing size can be easily varied to optimize design.
- Overburden and footing weight are taken into consideration.
- Short-term load can be specified as either seismic or wind.
- One way shear is calculated based on maximum condition for each of the four sides.
- Bending moment and required reinforcing are calculated based on the maximum condition for each of the four sides in accordance with Ultimate Strength Design Methods.


## Assumptions \& Limitations

- Sliding restraint on footing not checked.
- Design method follows Ultimate Strength Design.
- Biaxial analysis uses "Skew Bending Theories" correlated with Sling's equations for pressures in bodies where tension is not allowed. From the neutral axis position and maximum soil pressure calculated, a 2,500 cell pressure grid is created under the footing. The pressures within various areas are then added to calculate one way shears, two-way shears, and bending moments.
- This program assumes there will be a net upward force on the footing.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.

## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab

General Loads／ACI Factors	
Description Load Offset，M \＆V Along both axes	
Allowable Soil Bearing	4，500．00 $\frac{4}{\underline{\text { a }}} \mathrm{psf}$
Short Term Increase	1.330
Seismic Zone	0 0
Biaxial Analysis	$\Gamma$
Combine LL w ST ？	$\Gamma$
Concrete Weight	145.00 考 pcf
$f \mathrm{c}$	3．000．0 ${ }_{\text {考 }} \mathrm{psi}$
Fy	60，000．0 $\frac{\square}{\square} \mathrm{psi}$
Min Steel \％	0.0014
Rebar Center To Edge Dist．	3.500 年 in
Dimensions．．．	
Width along $X$－$X$ Axis	6.750 考 ft
Length along Y － Y Axis	$10.170 \frac{4}{7} \mathrm{ft}$
Footing Thickness	36.00 考 in
Col Dim．Along $X$－X Axis	$12.000 \frac{4}{7}$ in
Col Dim．Along Y－Y Axis	24.000 考 in
Base Pedestal Height	12.000 考 in

## Allowable Soil Pressure

Enter the maximum allowable soil bearing pressure for static（not short term）loading．

## Short Term Increase

If a short term increase in soil pressure will be allowed，enter the multiplier here．

## Seismic Zone

This entry is used to control overall ACI load factoring．When wind loads generate the short－term forces，enter a 0 ＂here．When seismic loads generate the short－term loads，enter 1 ＂through 4 ＂here to indicate the UBC seismic zone．When zone 3 or 4 is used，the special load factoring provisions of the UBC section 2625 are applied．

## Biaxial Analysis

This YES／NO flag instructs the program whether or not to combine all loads and moments simultaneously about each axis when performing the analysis．If you answer NO，the moments and shears about each axis are applied separately to produce maximum soil bearing pressures．

## Combine LL \＆ST

This entry instructs the program when to include live load with short-term loads. Typically, wind load analysis will include live load, while short-term loads due to seismic forces are usually not combined with live loads.

## Concrete Weight

By entering a non-zero number here, the weight of the footing will be included in soil bearing pressure, shear, and bending calculations.
f'c
Allowable compressive stress for the concrete.
Fy
Allowable yield stress of the reinforcing steel

## Rebar CL to Soil

Enter the distance from the bottom of the footing to the centerline of the reinforcing. This will be subtracted from the footing thickness to calculate rebar d distance when determining required reinforcing and shear depths/distances.

## Minimum Steel \%

Enter the minimum percentage of steel reinforcing that you wish to use when determining required reinforcing area. See As Required for a discussion of how this item is used.

## Loads Tab

## General Loads $\mid \mathrm{ACl}$ Factors

## Applied Vertical Load...

Dead Load . . . . . . . .
Live Load . . . . . .
Short Term Load . . .
...ecc along X-X Axis .


## Overburden Wt.



## Applied Moments...



Applied Shears...
Rotation on $Y-Y$ Axis



## Axial Loads

You can apply a dead, live, and short-term axial load to the footing. These loads will be DL+LL and $\mathrm{DL}+\mathrm{ST}+[\mathrm{LL}]$ combinations when calculating maximum bearing pressures.

## Eccentricity

This eccentricity specifies the distance the column is shifted from the center of the footing. These eccentricities will cause the axial loads to induce moments onto the footing.

## Overburden Weight

This represents an applied uniform surcharge load over the footing. It can be from soil, concrete slab, or storage loads.

## Moments

This program allows you to apply dead, live, and short-term moments at the footing centerline. Positive moments will cause higher soil pressures at the top and right side of the footing. This corresponds to the +Y and +X directions.

## Shear

You can also apply horizontal dead, live, and short-term shears at the plane of the top of the footing. To calculate the actual overturning moments due to these loads, the shears are multiplied by the Footing Thickness + Base Height. Positive shears will cause higher soil pressures at the top and right side of the footing. This corresponds to the +Y and +X directions.

## ACI Factors Tab

This tab specifies the load factors to be used by the program when calculation the factored dead, live, and short term loads to be used in the internal load combinations for determining $\mathrm{Mu} \& \mathrm{Vu}$.

General Loads ACI Factors	
Load Factors (Nomen	1318-02 AppxC)
ACI C-1 \& C-2 Dead Load	1.40
$\mathrm{ACIC}-1$ \& C-2 Live Load	1.70
ACI C-1 \& \& C-2 Short Term	1.70
$\ldots .$. seismic $=\mathrm{ST}^{*}$	1.10 used in $\mathrm{C}-1, \mathrm{C}-2$, and $\mathrm{C}-3$
ACl C-2 Group Factor	0.75
ACIC-3 Dead Load Factor	0.90
$\mathrm{ACl} \mathrm{C-3} \mathrm{Short} \mathrm{Term} \mathrm{Factor}$	1.30
Additional Seismic Zone 3 \& 4	
"1.4" Factor	1.40
"0.9" Factor	0.90

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Summary Tab

This section summarizes the results of the analysis. For each loading direction, the maximum service and factored soil pressures are given for both static and short term loading. Notice that for service load bearing pressure, only DL+LL and DL+[LL]+ST are used as load combinations. For factored load pressures, ACI equations C-1, C-2, and C-3 are used. When a biaxial analysis is used, the pressures at left, right, top, and bottom reflect all loads applied at once. For non-biaxial analysis, the loads are applied about each axis separately to give separate maximum Left/Right and Top/Bottom pressures.


## Max. \& Allow Pressure

This is the absolute maximum service load soil pressure for both load conditions as presented in the area titled Service Load Pressure within the summary box.

## X Ecc. \&Y Ecc.

These eccentricities are the location of the total vertical force resultant considering axial load eccentricity, and applied moments and lateral shears. This eccentricity is measured from the footing centerline.

Mu
Maximum factored moments created about all four sides of the footing from factored soil pressures generated by ACI equation 9-1, 9-2, and 9-3.

## Vu: 1 Way

By using the Column Dimension values to determine the shear plane for one-way bending, this is the maximum shear by checking all four sides of the footing and all three ACI equations.

## Vu:2 Way

By using the Column Dimension values to determine the punching shear perimeter area, this is the maximum punching from checking all three ACI equations.

## Overturning Stability

Factor of safety against overturning by applying the loads and moments about each axis. Biaxial analysis has no effect on this number. 999" indicates there is no overturning.

## Service Load Pressures

This table shows the actual service load soil pressures at all four sides of the footing due to static and short-term load combinations.

## Factored Load Pressure

This table shows the actual factored load soil pressures at all four sides of the footing by combining all loads into ACI load combinations 9-1,9-2, and 9-3.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".
Summary Sketch Printing

Please select printout sections to be printed...

General Information	$\bar{\nabla}$
Loads	$\nabla \bar{\nabla}$
Summary	$\nabla$
Footing Design	$\nabla$
Soil Pressure Summary	$\nabla$
ACl Factors	$\nabla$

Note: When all are selected, the software will still omit unused sections

## Sample Printout



ENERCALC Engineering Software
P.O. Box 188

Corona del Mar, CA 92660
Voice: 949-645-0161
www.enercalc.com

Title: ENERCALC Examole Problems Job \# 97-000001
Dsgnr: MDE Date: $11: 14 \mathrm{PM}, 26$ OCT 03
Description : Collection of example problems
Scope : All programs in the Structural Engineering Library

Description Load Offset, M \& V Along both axes

Soil Pressure Summary							
Service Load Soil Pressures$\mathrm{DL}+\mathrm{LL}$		Left	Right		Top	Bottom	
		2,575.23	2,575.23		2,575.23	2,575.23	
$D L+L L+S T$		1,246.54	2,735.63		2,250.63	1,731.54	
Factored Load Soil Pressures							
ACI Eq. C-1		3,833.00	3,833.00		3,833.00	3,833,00	
ACI Eq. C-2		1,330.71	2,920.35		$2,402.60$	1,848.46	
ACI Eq. C-3		1,163.28	2,552.91		2,100.30	1,615.89	
ACI Factors (per ACl 318-02, applied internally to entered loads)							
ACIC-1 \& C-2 DL	1.400	ACl C		0.750	Add"	for Seismic	1.400
$\mathrm{ACl}-1$ \& $\mathrm{C}-2 \mathrm{LL}$	1.700	ACl	Factor	0.900	Add"	for Seismic	0.900
$\mathrm{AClC}-1 \& \mathrm{C}-2 \mathrm{ST}$ seismic $=$ ST $*$	$\begin{aligned} & 1.700 \\ & 1.100 \end{aligned}$	ACl	Factor	1.300			

### 2.9 Combined Footing

This program provides design and analysis of rectangular footings supporting two columns applying axial load, lateral shear, and bending moment forces. The program is ideal for footings supporting braced frames (short-term uplift at one end) and for eccentrically loaded footings which need to have semi-uniform soil loading patterns.

Each column can apply dead, live, and short term loads to the footing, can have their own depth and width dimensions, and can be located at any distance apart and from the footing ends. The columns must lie on the footing centerline along the longer axis .

In addition to the column loads, footing weight and overburden loads are added. A typical feature allows you to specify a seismic zone number from 0" through 4", 0" indicating wind loads and 1 " through 4 " being used by the program to control seismic load factoring.

Footing projections on either side of the columns, footing width, and footing thickness can be easily modified to design a footing to satisfy soil pressure, shear, bending, and overturning stability requirements.

The program provides complete analysis and design results by combining all loads using factored ACI load combinations 9-1, 9-2, and 9-3, including one way shears, two way shears, service and factored soil pressures, and bending moments and reinforcing.


## Basic Usage

- Allowable Soil Pressure and Short Term Factor specify the maximum soil bearing pressure allowed for static (DL+LL) and short term (DL+LL+ST) load combinations. Seismic Zone should be set to 0 " if short-term loads are due to wind, and 1" through 4 " if seismic. If you wish to Combine Live Loads with short term loads, all short term calculations will use DL+LL+ST (typical seismic design uses DL+ ST only).
- Concrete Weight and Overburden will be added in as dead loads during the analysis. (Overburden will be applied to the area above the footing, less the area specified for
column size). Minimum As \% will be used as an absolute minimum when determining reinforcing requirements.
- Axial loads, lateral shears, and moments with dead, live, and short-term components can be applied to each column. Although these loads act along the footing centerline, they can be positive or negative, allowing design of footings supporting braced frames.
- Sign Conventions are as follows:
- Positive Axial Loads act downward.
- Positive Lateral Shears act to the right, creating greater soil pressure
- at the right side of the footing.
- Positive Moments act clockwise, creating greater soil pressure at the
- right side of the footing.
- Footing Dimensions can be specified for the distance left of column \#1, right of column \#2, and the distance between columns. These are added to give the total footing length. Footing width, thickness, and rebar clear cover complete the specifying of footing dimensions.
- Calculating the program will determine the actual service and factored soil pressures, moments and shears, and required reinforcing. You can then modify footing sizes and reinforcing to obtain optimum designs. All three ACI load factor combinations 9-1, 9-2, and 9-3 are evaluated simultaneously.


## Unique Features

- This program easily sizes a footing supporting two loads with moments and lateral shears, and gives maximum and minimum soil pressures, one and two way shears and bending moments evaluated for both ends of the footing.
- Accepts both static and seismic/wind loads, and evaluates soil pressure for both.
- Footing size can be easily varied to optimize design.
- Overburden and footing weight are taken into consideration.
- Short-term load can be specified as either seismic or wind.
- User may specify whether or not live loads act during short term.
- Distance between columns is divided into 250 increments for calculation of maximum moments.


## Assumptions \& Limitations

- Both columns must lie on the footing centerline along one axis.
- Beam on Elastic Foundation effects of soil are not considered. This analysis assumes that soil pressures will be linear under a rigid footing.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.

## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on
the tabs on the right－hand side of the screen（calculated values，sketches，diagrams， etc．）．A recalculation is performed after any entry data is changed．After each data entry you can view the results on the right－hand set of tabs．

## General Tab

General｜Design Data．．．｜Loads｜ACI Factors	
Description Simple combined footing w／short term loads	
Allow Soil Pressure ．．．．．．．．．．．．$\quad 2,500.0 \frac{4}{\square} \mathrm{psf}$	
Footing Size．．．	
Distance Left	$4.500 \div \frac{1}{7} \mathrm{ft}$
Between Columns	17.000 妻 ft
Distance Right	3.000 麦 ft
Footing Length	24.50
Width	$8.000 \frac{4}{7} \mathrm{ft}$
Thickness	24.00 考 in
Column Support Pedestal Sizes．．．   \＃1：Square Dimension Height   \＃2：Square Dimension Height	

## Allowable Soil Pressure

Enter the maximum allowable soil bearing pressure for static loading．

## Distance Left

This is the distance the footing extends on the left side of the footing．It is measured from the centerline of the left side column to the edge of footing．

## Between Columns

This is the separation between columns，measured between the column centerline＇s．

## Distance Right

This is the distance the footing extends on the right side of the footing. It is measured from the centerline of the right side column to the edge of footing.

## Footing Length

The total length of the footing which equals Distance Left + Between Columns + Distance Right.

## Width

Width of the footing

## Thickness

Thickness of the footing

## Column Support Pedestal Sizes

These dimensions define the distances that will be used to compute moments and shears. The edge of this area defines an assumed solid column at which moments will act. Distances of $d$ and $d / 2^{\prime \prime}$ will be added to the edge location for calculation of shear forces. Overburden weight is not applied to this area.

## Design Data Tab



## Seismic Zone

This entry is used to control overall ACI load factoring. When wind loads generate the short-term forces, enter a 0 " here. When seismic loads generate the short-term loads, enter 1 " through 4 " here to indicate the UBC seismic zone. When zone 3 or 4 is used, the special load factoring provisions of the UBC are applied.

## Include Live Load w/ Short Term Loads

This entry instructs the program when to include live load with short-term loads. Typically, wind load analysis will include live load, while short-term loads due to seismic forces are not combined with live loads.

## Short Term Increase

If a short-term increase in soil pressure will be allowed, enter the multiplier here.
f＇c
Allowable compressive stress for the concrete．
Fy
Allowable yield stress of the reinforcing steel．
Min．As \％
Enter the minimum percentage of steel reinforcing that you wish the program to use when determining required reinforcing area．

## Distance to Centerline of Rebar

Enter the distance from the top or bottom of the footing to the centerline of the reinforcing．This will be subtracted from the footing thickness to calculate rebar d distances when determining required reinforcing and shear depths and distances．

## Concrete Weight

By entering a non－zero number here，the weight of the footing will be included in soil bearing pressure calculations．

## Loads Tab

General ${ }^{\text {D }}$ Design Data．．．	Loads ACI Factors	
Vertical Loads．．．	＠Left Column	＠Right Column
Dead Load	$21.000 \div$	$16.000 \stackrel{+}{\square} \mathrm{k}$
Live Load	16.000 素	$13.000 \frac{\square}{7} \mathrm{k}$
Short Term Load	$\stackrel{ \pm}{\square}$	5.000 考 $k$
Applied Moments．．．		
Dead Load	考	$\stackrel{ \pm}{7} \mathrm{k}-\mathrm{ft}$
Live Load	$\stackrel{4}{7}$	$\stackrel{\square}{7} \mathrm{k}$－ft
Short Term Load	$\stackrel{4}{7}$	$\stackrel{4}{7} \mathrm{k}$－ft
Applied Shears．．．		
Dead Load	考	$\stackrel{\text { ® }}{\text { ® }}$ k
Live Load	考	$\stackrel{\text { ® }}{\text { ® }}$
Short Term Load	$3.000 \frac{\square}{7}$	$3.000 \div \frac{\square}{\square} k$
Overburden		200.000 者 $p$ sf

## Vertical Loads

The footing may support two columns transferring axial, shear, and moment loads to the footing. Each of these columns must lie along the centerline of the footing, but may be positioned at any location along the footings length. Axial Each axial load can have dead, live, and short term components.

## Applied Moments

Each column may apply a moment to the footing, consisting of dead, live, and short-term components. Positive moments will apply a Clockwise torque to the footing (opposite the typical direction for right-hand-rule). Positive moments will increase the soil pressure at the right end of the footing.

## Applied Shears

Each column may apply a lateral shear at the top of the footing, consisting of dead, live, and short-term components. Positive shears will apply a force to the right. Positive shears will be applied at a vertical eccentricity equal to the Footing Thickness and the resulting moment will increase the soil pressure at the right end of the footing.

## Overburden

This is a general load that you may input to apply an additional uniform area load on the top of the entire footing. This load is also applied where the column dimensions are defined and so will be slightly conservative.

## ACI Factors Tab

This tab specifies the load factors to be used by the program when calculation the factored dead, live, and short term loads to be used in the internal load combinations for determining Mu \& Vu.


Additional Factors for Seismic Zone 3 \& 4
"1.4" Factor
"0.9" Factor

1.400
0.900

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection
diagram.

## Results Tab

This tab gives the calculated governing values of maximum soil pressure, footing shear, and the minimum overturning stability ration for the footing considering all applied loads and load combinations.

Results $\mid$ Soil Pressures	M \& V Summary
	Reinforcing $\mid$
Max Soil Pressure	Footing Design OK
Allowable	839.85 psf
Vu: Max Shear	$2,500.00 \mathrm{psf}$
Vn * Phi : Allowable	17.08 psi
	186.23 psi
Min. Overturning Stability	
Steel Req'd@ Left	$93.513: 1$
Steel Req'd@Center	$0.34 \mathrm{in} 2 / \mathrm{ft}$
Steel Req'd@ Right	$0.34 \mathrm{in} 2 / \mathrm{ft}$
	$0.34 \mathrm{in} 2 / \mathrm{ft}$

## Overturning Stability

The overturning stability ratio for the footing is calculated considering all applied moments, shears, vertical loads, footing weight, and soil weight for both static and short-term cases.

For this value, both sides of the footing are used as a reference point for calculation of overturning ratios and the smaller value is displayed, representing the minimum factor of safety. "999" indicates there is no overturning on the footing, or the ratio is so great as to be meaningless.

## As Req'd

Required area of steel is calculated by:

- Using the maximum Mu to determine the required steel percentage
- Comparing the required steel percentage with 200/Fy. If required is greater than 200/Fy, then
required is used. If the required percentage is less than 200/Fy, the required is multiplied by 1.33 and that result compared with 200/Fy, and the lesser value used.

The resulting percentage calculated above is compared with Minimum Steel \% the user entered, and the maximum of those values multiplied by the footing area to determine required area. If As = 999, required steel exceeds 0.75 * Rho Balanced.

## Results / Soil Pressure Tab

Results Soil Pressures $/$ \& V V Summary $/$ Reinforcing		
Unfactored Soil Pressures...		
Soil Presure @ Left End	Actual	Allowable
Static DL + LL	839.85 psf	2,500.00 psf
Short DL + LL + ST	633.06 psf	3,325.00 psf
Soil Presure @ Right End		
Static DL + LL	793.62 psf	2,500.00 psf
Static DL + LL + ST	755.51 psf	3,325.00 psf
ACI Factored Soil Pressures...		
@ Left End	Soil Pressure	Eccentricity
$\mathrm{ACIEq}$. C-1 Comb.	1,221.43 psf	0.116 ft
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.	886.29 psf	0.360 ft
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.	581.39 psf	
@ Right End		
ACI Eq. C-1 Comb.	1,154.20 psf	-0.116 ft
ACl Eq. C-2	$1,057.71 \mathrm{psf}$	0.360 ft
$\mathrm{ACl} \mathrm{Eq}. \mathrm{C-3}$	693.84 psf	

## Static Soil Pressures

For each end of the footing, the axial loads, shears, moments, overburden, and footing weight are applied to calculate the static soil pressures. Dead and live load forces are included in this calculation, no short term loads. These pressure values are compared to the basic allowable soil bearing pressure.

## Short Term Soil Pressures

This is similar to the "Static" calculation, except short term load is always included, and live load is included only if Combine LL \& ST is set to YES.

## Unfactored Soil Pressures

Service level soil pressures are the resulting soil pressures BEFORE any ACI load factors are applied, and are used to determine compliance with allowable soil bearing pressures. Allowable pressure for "Static" conditions is a simple restatement of the Allowable Soil Pressure entered at the top of the program. Short term allowable pressure equal the static allowable multiplied by the "Short Term Factor".

## ACI Factored Soil Pressures

For both the left and right end of the footing, ACI equations 9-1, 9-2, and 9-3 are used to factor the various combinations of dead, live, and short term loads to arrive at the factored soil pressures
presented here. These pressures are used to calculate moments and shears in the footing, both at each end and between supports.

## Results / M \& V Summary Tab

Results ${ }^{\text {Soil Pressures }}$	M \& V Summ	Reinforcing	
....Note: All moments are per unit width of footing....			
Moments...	$\mathrm{ACIC-1}$	ACIC-2	ACIC-3
Mu@Col\#1	4.01	1.64	1.14 k -ft
Mu Btwn Cols	-14.73	-8.87	-6.08 k-ft
Mu@ Col \#2	1.09	0.88	0.60 k -ft
One Way Shears...			
Vn * Phi : Allow	93.11	93.11	93.11 psi
Vu@ Col \#1	4.72	1.92	1.33 psi
Vu Btwn Cols	11.51	6.93	4.50 psi
Vu@ Col \#2	0.82	0.65	0.44 psi
Two Way Shears...			
Vn * Phi : Allow	186.23	186.23	186.23 psi
Vu@ Col \#1	17.08	8.90	6.38 psi
Vu@ Col \#2	11.10	7.11	5.26 psi

## Moments

Mu for ACI Equation The bending moments for both static and short-term cases are listed here.
Evaluation of bending moments include factored soil pressure (and its variation in intensity under the footing, even in cases where the eccentricity lies outside the kern), footing weight, and overburden weight. When values appear as negative, indicates that steel reinforcing must be placed in the top of the footing.
The maximum moment between columns is evaluated by finding the maximum moment at 100 points. Variation in soil pressure, footing weight, soil weight, applied moments, and moments induced by horizontal shears applied to the columns are all considered in the maximum moment calculation. For Mu at Column \#1 and Column \#2, the moments are induced from upward soil pressure applied to the cantilever portion of the footing, downward force from overburden and footing weight.

## One-Way Shear

Using the maximum factored soil pressures presented earlier, the maximum one way shear stress at a vertical plane a distance d away from the Equivalent Column face. The vertical depth used for shear area equals footing thickness minus Rebar CL To Soil. Allowable one-way shear stress is calculated as : 2 * $f^{\prime} c^{1 / 2}$

## 2-Way Shear

The maximum two-way shear stress in taken on four vertical planes a distance $d / 2$ away from the Equivalent Column face. The vertical depth used for shear area equals footing thickness minus Rebar CL To Soil. Allowable two-shear stress is calculated as : 4 * $\mathrm{f}^{\prime} \mathrm{c}^{1 / 2}$

## Results / Reinforcing Tab

This tab summarizes the required reinforcing for the three important locations on the footing:

Due to moments created at the left side of the left column due to upward soil loads in the left footing projection.
Moments in the footing between the columns due to upward soil pressure.
Due to moments created at the right side of the right column due to upward soil loads in the right footing projection.

Results	Soil Pressures	Reinforcing		
			( per	of footing)
(a) Left Edge of Col \#1			Ru/Phi	As Reg'd
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.1 Combination			10.60 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.			4.34 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.			3.02 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$
Between Columns				
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.1 Combination			38.95 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.			23.46 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.			16.06 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$
@ Right Edge of Col \#2				
$\mathrm{ACl} \mathrm{C}-1$ Combination			2.89 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.			2.32 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$
$\mathrm{ACl} \mathrm{Eq} \mathrm{C}-$.			1.57 psi	$0.344 \mathrm{in} 2 / \mathrm{ft}$

## Ru/Phi

This is the resisting modulus required by the footing section which is $M U /(b * d \wedge 2 * P h i)$

## As Required

This is the area of steel required per foot of footing WIDTH at the location.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Diagrams Tab

This displays a moment, shear, and deflection diagram for the beam with the applied loads and end conditions. Note the two tabs...."Graphic Diagram" and "Data Table". The Data Table tab provides the entire internal analysis at the $1 / 500$ th points within the beam.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".
Results $\mid$ Sketch $\mid$ Diagrams Printing $\mid$
Please select printout sections to be printed...

General Information Dimensions Loads Summary Soil Pressures Moment \& Shear Summary Reinforcing ACl Factors
$\nabla$
$\sqrt{V}$
V
V
V
$\nabla$
V
V

Note: When all are selected, the software will still omit unused sections

## Sample Printout

ENERCALC Engineering Software
P.O. Box 188
Corona del Mar, CA 92660
Voice: $949-645-0151$

## ENERCALC Engineering Software

O. Box 188

Voice: 949-645-0151
www.enercalc.com

Title: ENERCALC Exampla Problems Job \# 97-000001
Dsgne: MDB Date: 11:19PM, 26 OCT 03
Description : Collection of example problems
Scope: All programs in the Structural Engineering Library

	Combined Footing Design	速

Description Simple combined footing w/sh ort term loads




### 2.10 Rebar Embedment Length

This program calculates embedment and splice lengths for deformed steel rebar in concrete. Since typical embedment lengths are readily available in tables, this program is primarily for developing tables of embedment lengths when unusual conditions effect the lengths

Two major categories of embedment calculation are available; straight embedment and hooked embedment. The program calculates the basic tension embedment length for straight and hooked cases, and compression embedment for straight cases only.

This program also lists required lap splice lengths for Class "A" and "B" splices.


## Basic Usage

- This program provides five columns to specify different rebar sizes and embedment conditions. The entry descriptions below apply to all columns.
- Enter Bar Data. Rebar size \# (in 1/8th inch increments), f'c, and Fy.
- Enter Modification Factors. Here you can specify whether the cover and spacing requirements of ACI 12.2.3 are satisfied, whether lightweight concrete is used, bar location, excess steel area ratio, or if the bars are enclosed in spirals. The answers to these items will be used to apply factors to the basic embedment lengths for determining the final Modified embedment lengths.
- The minimum embedment lengths are calculated for both straight and hooked conditions. If your actual construction details provide only limited embedment lengths, you can modify the various factors and recalculate until the desirable lengths are attained.


## Unique Features

To reduce the infrequent task of calculating specialized rebar embedment lengths, this program brings together all the code requirements of ACI sections 12.2, 12.5, 12.16, and 12.17 in a quick, concise, and flexible calculation tool.

## Assumptions \& Limitations

- Rebar areas are chosen from an internally stored table of values typically used in engineering practice.
- Evaluation of embedment lengths and splices follow ACI.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.

## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.


## Rebar Size \#

Enter the rebar size \# which should be used for the analysis in each column.
f'c
Enter the 28 day concrete compressive strength in this location.
Fy

Enter the steel yield strength in this location.

## Code Edition

Select between ACI 318-91 and several later code. This changes the look of the tab slightly to provide the proper items for the selected code.

## Actual Rebar Area

Based upon the rebar size number entered immediately above, the typical area used in engineering practice is recalled from an internal table and shown here.

## Straight Embedment

## ACI 12.2.3

Enter the appropriate multiplication factor depending on how your reinforcing satisfies ACI section 12.2.3. This section is new in the 1989 code, and represents how rebar cover, spacing, and placement effect the required embedment lengths. These provisions are primarily aimed at limiting dangerous crack propagation to the concrete surface.

## Lightweight Concrete

Enter 1.33 " for lightweight concrete or 1.18 " for sand lightweight concrete as defined by the ACI. For normal weight concrete, enter 1 ".

## Top Bar Placement

Enter 1.4 " if the rebar is located so that there is more than 12 " of concrete below the bar (or other condition that would necessitate a top condition.

## As Required / As Actual Ratio

When the required area of steel is less than what has been provided, enter the ratio of required/supplied area here.

## Within Ties / Spirals

When the reinforcement is enclosed in a spiral not less than $1 / 4$ " diameter nor more than 4 in pitch, enter 0.75".

## Hooked Embedment

## Adequate Cover

Answer $1^{\prime \prime}$ if cover exceeds $2-1 / 2^{\prime \prime}$ normal to the plane of the hook, or 2 " beyond the embedment of the 90 degree hook extension.

## Lightweight Concrete

Enter 1.33 " for lightweight concrete or 1.18 " for sand lightweight concrete as defined by the ACI. For normal weight concrete.

## Embedment Lengths

## Tension

Basic Before Adjustments : The program calculates the basic tension embedment length per ACI section 12.3.3, but not less than 12".
Final After Adjustments : This value represents the Basic Tension Embedment Length multiplied by all of the adjustment factors specified above.

## Compression

Basic Before Adjustments : The program calculates the basic compression embedment length ACI section 12.3, but not less than 8".
Final After Adjustments : This value represents the Basic Compression Embedment Length multiplied by all of the adjustment factors specified above.

## Hooked

Basic Before Adjustments : The program calculates the basic tension embedment length per ACI section 12.3.3, but not less than 12".
Final After Adjustments : This value represents the Basic Tension Embedment Length multiplied by all of the adjustment factors specified above.

## Splice Lengths

Splice lengths per ACI 12.15 for tension and ACI 12.16 for compression are calculated for the reinforcing.

## Sample Printout

NERCALC Engineering Software	Title : ENERCALC Example Problems Job \# 97-000001
P.O. Box 188	Dsgnr: MDB Date: 11:24PM, 26 OCT 03
C orona del Mar, CA 92660	Description : Collection of example problems
Voice: 949-645-0151	Scope: All programs in the Structural Engineering Library


Rev: 580000   User: KWW000000 I, ver 5.80, 10-Sep-2003   (c) 11833-2003 ENERCALC Engine ering Sotware	Rebar Embedment Lengths	Page 1 cilec55lexamples.ecw: Concrete Calcs

Description Several bars with different embedment conditions



## 3 Masonry Design Modules

The programs in this section provide analysis and design for structural elements made of concrete unit masonry.

## Code References

Program modules for MASONRY design are designed to be in conformance with the ACI 530-02 Edition. Masonry design is performed using "Allowable Stress Design" analysis \& design procedures using factored loads and reduced allowable capacities. Exception : The module titled "Slender Masonry Wall Design" uses an ultimate strength P-Delta analysis.

Masonry design procedures in these modules follow the following code requirements:

- Design procedures for masonry follow ACI 530-02 Chapter 2.
- IBC 2003 Sections 2108.1 and 2901.1 reference ACI 530 for the design of masonry.
- 1997 UBC Chapter 21 provisions are based on ACI 530.
- 2003 NFPA 5000 Section 35.1.8.4 references ACI-318 for the design of masonry.
- Load combinations are according to ACI 530-02 Chapter 2


## Masonry Wall

Masonry Wall uses non P-Delta working stress design procedures. UBC load combination equations of dead, live, and short term loads at top and mid-height are used to determine adequacy. Items considered include special inspection, solid grouting, eccentric loads, rebar location, and parapet loads.

## Slender Masonry Wall Design

Slender Masonry Wall Design provides design analysis according to 1994 UBC section 2108.2.4 which considers P-Delta effects on total moment and wall deflection, and uses ultimate strength concepts. Added lateral point and distributed loads may be applied to model jambs at openings. Special inspection, rebar location, seismic factors, wind loads, spacing of grouted cells, and eccentric/concentric vertical loads can be modified and included in analysis. The program iterates until deflection convergence is reached for both service and factored load cases.

## Masonry Column Design

Masonry Column Design gives design calculations for masonry columns which may or may not be built within a wall. For conditions where a wall does exist, the column analysis can include the effect of tributary lateral wind or seismic loads. A single axial dead and live load with eccentricity is applied to the top. Allowable bending and axial stress is calculated using MIA equations, and combined stress results are given for all
combinations.

## Flush Wall Masonry Column

Flush Wall Masonry Column is similar to the Masonry Column program, except this column is contained entirely within the wall thickness. Axial loads and lateral loads due to wind and seismic forces are included in the analysis. An assumed width based upon bearing length plus four times column thickness is used unless modified. Allowable bending and axial stress is calculated using MIA equations, and interaction equation results are given for four combination conditions.

## Masonry Shear Pier Analysis

Masonry Shear Pier Analysis can analyze force distribution between collinear shear elements in walls based upon their relative rigidities. Each pier may have a fixed or pinned end, have differing height, length, and thickness, and be of different construction types. Based upon these parameters, a single lateral load is distributed between the piers and required shear and bending reinforcement is given.

## Masonry Lintel Design

Masonry Lintel Design allows vertical, lateral, and perpendicular loads, flexible rebar locations, and fixed or pinned end conditions.

### 3.1 Masonry Wall

This program provides design and analysis of masonry walls subjected to a combination of axial uniform dead and live loads, eccentric uniform vertical dead and live loads, and lateral loads due to seismic or wind forces. For design of masonry walls using the UBC Slender Wall method, please use the program entitled Slender Masonry Wall Design to perform this type of design.

The user may specify wall and parapet height, added vertical loads, seismic factor or wind load, wall thickness and reinforcing, special inspection, and grout spacing. The program calculates the actual and allowable axial and bending stresses, and combines them using interaction equations for your review.

The working stress method is used to calculate allowable axial and bending stresses. Three load combinations are evaluated for both the top of the wall and mid-height stress analysis using the axial and bending interaction equations.


## Basic Usage

- Design Data should be entered to define the material strengths, inspection status, and grouting to be used for the wall. Also, the Lateral Load Factor can be used to specify either wind load or seismic factor (please see the specific description in the Detailed Item Summary section).
- The Wall \& Load Data section allows you to specify wall heights and additional loads. The wall height can consist of a clear span and parapet extension, both of which will have seismic or wind loads applied. Uniform eccentric and concentric vertical loads can be applied to transfer roof, floor, or upper level loads to the wall.
- Wall Thickness, Rebar Size, Spacing, and Location can be entered and modified during the design process to bring actual stresses below allowable values.
- After entering the above information, calculate the calcsheet and review the Design Summary section. This section gives detailed analysis results for vertical and moment forces, steel and masonry stresses, and combined axial and bending stress results. Both the top of the wall and mid-height are investigated.
- You can also review the Allowable Stresses section to inspect the individual values used to calculate allowable bending and axial stress. The Vertical Loads \& Moments section can also be reviewed to see how the dead, live, and lateral loads are combined to achieve the maximum stress results.
- When satisfied, you can Print or Save the data for the current calculation, Reset the calcsheet, or use the Access Menu to choose another program.


## Unique Features

- This program permits quick evaluation of a masonry wall subjected to a variety of forces and varying materials and reinforcing.
- Both wind and seismic loads may be applied to the wall.
- The program provides detailed results of various combinations of dead, live, and lateral loads and their effect on moments at the top and mid-height wall sections.


## Assumptions \& Limitations

- A strip of wall one-foot in length is used for analysis, and all forces should be entered on a force per lineal foot basis.
- P-Delta effects are not considered. The conventional allowable axial stress formula considering slenderness is used.
- provisions for calculating allowable axial stress due to wall slenderness, allowable bending stresses in masonry and concrete, and calculation of actual axial and bending stresses.
- Live load can be specified as floor or roof. If specified as floor, it will always be included with wind/seismic analysis.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab

General｜Loads			
Description Typical wall section			
Wall Height			500 考 ft
Parapet Height		3	000 毒 ft
Wall Thickness		8	$\square \mathrm{F}$
Rebar Size		5	$\checkmark$
Rebar Spacing		16	$\square \mathrm{in}$
Rebar Location		c Center	$C$ Edge
Depth to Rebar			3.810 in
f＇m		1，50	$0.0 \stackrel{\text { 者 }}{ } \mathrm{psi}$
Fs		24，00	0.0 考 psi
Special Inspection			－
Solid Grouting			
Wall ：＂94 UBC Seismic Factor Z lp Cp－or－ Similar 1997 UBC Factor Divided by 1.4			0.330
Load Duration Factor			1.330
Wall Wt Multiplier			1.000
Calc of Em $=\mathrm{fm}^{\prime}$＊			750.0
Use Grouting at Face Shells Only？		$\Gamma$	
Block Type	－¢ Lightweight	C Medium Wht	C Normal W／t

## Wall Height

The unsupported wall height is measured from the points of lateral support at the floor and roof／second floor．This distance is used to determine moments in the wall due to applied lateral seismic or wind loads．

## Parapet Height

This portion of the wall extends above the Clear Span Height and will apply a concentrated moment due to wind or seismic load to the top of the wall．Vertical load due to the parapet weight is also included．

## Wall Thickness

Enter the nominal wall thickness you are using or an estimate of what will be needed．A table of＂d＂ values，equivalent solid thickness，and weights are stored in the program，and the appropriate value will be selected based upon nominal wall thickness．Thicknesses allowed are 6 ＂， 8 ＂， 10 ＂， 12 ＂， 14 ＂，and 16 ＂inches．

## Rebar Size

The user enters choice of rebar to be used in the analysis．Rebar area recalled from a typical table．\＃3 through \＃11 bars are allowed（\＃14 and \＃18 will cause the program to not calculate）．

## Rebar Spacing

The rebar spacing entered here applies to the rebar size entered above. Please be sure to enter the spacing as it applies to the block modules being used! Only 8 ", 16 ", 24 ", 32 ", 40 ", and 48 " inches are allowed.

## Rebar Location

Select if the vertical reinforcement will be located at the centerline of the wall at the outside edge.
NOTE: If reinforcing is stated to be at each face, two layers of rebar will not be used in the evaluation of section properties, only one bar at the $d$ for bar placed at each face will be used.

## Depth to Rebar

Enter the depth the program will use from the compression face to the centerline of the rebar.
f'm
Enter the allowable masonry strength to be used in the analysis. The allowable bending and axial stresses calculated from f'm are outlined in a later section. If the user has chosen not to use special inspection, both allowable axial and bending stresses will be multiplied by $1 / 2$.

Fs
Enter the allowable tension strength of the reinforcing to be used. This value will be used as entered to determine the interaction equations for the design being performed.

## Special Inspection

In this location, specify YES if special inspection will be used, allowing full f'm based masonry stresses to be used. Entering NO specifies that no special Inspection will be performed, and all allowable stresses will be reduced by $1 / 2$.

## Solid Grouting

Enter YES if the wall will be solid grouted (regardless of steel spacing). Entering NO specifies that only cells containing vertical reinforcing will be grouted. This input effects the calculation for wall weight and equivalent solid thickness.

## Wall Seismic Factor

The seismic factor will be applied to the actual wall weight to generate the lateral load for seismic analysis.

## Wall Weight Multiplier

This factor is available for you to modify the wall weight recalled from the internal tables. The value will be applied directly to the internal wall weight and the product displayed as Wall Weight.

## Calc of $\mathrm{Em}=\mathrm{f}^{\prime} \mathrm{m}$ * (value)

In masonry construction the value of Em (Elastic Modulus of the masonry) is calculated as a multiplier applied to $\mathrm{f}^{\prime} \mathrm{m}$. Enter that multiplier here.

## Use Grouting at Face Shells Only ?

This item tells the program whether to calculate equivalent solid thickness using just the face cells with grout in the bedding or that all block surfaces that mate with the next block above or below have a grout bed.

## Block Type

This entry controls what block type is being used for determining the wall weight to be recalled from the internal tables. Select Lightweight, Medium Weight, or Normal Weight.

## Loads Tab

General Loads	
Wind Load	15．000－${ }^{\text {¢ }} \mathrm{psf}$
Uniform Load	
Dead Load	288.00 考 \＃
Live Load	192.00 考 \＃ft
Load Eccentricity	$6.500 \frac{\text { 考 in }}{}$
Uniform Load Type	c．Roof Load C Floor Load
Concentric Axial Load	
Dead Load	考 \＃
Live Load	考 \＃
Concentric Load Type	c Roof Load C Floor Load

## Wind Load

This wind load will be applied to the wall to determine moments for wind load analysis．

## Uniform Loads

These uniform loads are vertically applied to the wall at the specified eccentricity．The program resolves this loading to an axial load and concentrated moment applied at the top of the Clear Span Height．The concentrated moment is assumed to decrease to zero at the lower lateral support．This load is included in both bending and axial load computations．

## Uniform Load Eccentricity

The user may specify that the uniform dead and live load is applied at an eccentricity．When determining maximum moments，the moment created by the uniform load is always ADDED to the lateral load moments，regardless of whether eccentricity is positive or negative．

## Uniform Type

This flag specifies whether the uniform load is due to roof or floor loadings．When floor is used，the uniform live load will be included in wind and seismic analysis combinations．

## Concentric Axial Load

The user can specify an axial load applied to the top of the wall，such as load carried down from a floor above or just an added load．This load is considered axial stress only．（No P－Delta moments calculated）．

## Concentric Load Type

This flag specified whether the axial load is due to roof or floor loadings．When floor is used，the axial live load will be included in wind and seismic analysis combinations．

## Results \＆Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the＂Data Entry Tabs＂．Because a recalculation is performed with each data entry，the information
on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results / Summary Tab

This section provides a detailed breakdown of the forces and stresses on the wall. Various load combinations are provided at the top and mid-height of the wall to evaluate maximum stresses.

Summary Loads \& Moments ${ }^{\text {D }}$ Design Values					
Wall Design OK					
Max. Bending + Axial Comp. Stress Allowable				$\begin{aligned} & 296.62 \\ & 329.18 \end{aligned}$	psi   OK
Max. Axial Only Compressive Stress Allowable				$\begin{array}{r} 16.59 \\ 120.61 \end{array}$	psi   OK
Max Steel Bending Stress Allowable				11,050.82 psi 31,920.00 OK	
		Axial   Load	Bending Stress		Axial
Top of Wall	Moment in-\#	$\begin{aligned} & \text { Load } \\ & \text { lbs } \end{aligned}$	Steel psi	Masonny   psi	comp. psi
DL+LL	3.120 .0	660.0	4,060.0	103.9	9.48
DL+LL+W	2,682.0	468.0	3,490.1	89.3	6.72
DL+LL+S	2,941.2	468.0	3,827.4	97.9	6.72
Between Base \& Top of Wall					
DL+LL	1,560.0	1,155.0	2,030.0	51.9	16.59
DL+LL+W	6,668.1	963.0	8.677 .1	222.0	13.84
DL+LL+S	8.492 .2	963.0	11,050.8	282.8	13.84

## Maximum Values Summary

The area at the top of this tab shows the maximum stress values for the wall, allowable values, and an OK/NG indicator.

## Results / Loads \& Moments Tab

This table gives the various moments calculates in the wall, the total dead \& live loads, and some back-calculated maximum values for moments and axial loads.


## Results / Design Values Tab

Summary Loads \& Moments Design Values	
Allowable Stresses...   (Multiply by Load Duration Factor for Wind \& Seismic)	
Max Allow Axial Stress $=0.25 \mathrm{f}^{\prime} \mathrm{m}\left(1-(\mathrm{h} / 140 \mathrm{r})^{\mathrm{N}} 2\right)^{2}$	120.61 psi
Allowable Masonry Bending Stress. . . ( $\mathrm{fm} / 3$ ) * Load Dur Factor * (. 5 if no Splnsp)	247.50 psi
Allow Steel Bending Stress	24,000.00 psi
Equivalent Solid Thickness	5.800 in
E	1,125,000 psi
$\mathrm{n}=\mathrm{Es} / \mathrm{Em}$	25.778
Wall Wt	60.000 psf
As	0.233 in2
np	0.13109
k	0.39746
j	0.86751
$2 / \mathrm{kj}$	5.80047
Radius of gyration	2.368 in
Moment of Inertia	390.21 in4

## Allowable Stresses

In this section the allowable axial, masonry bending, and steel bending stresses are given along with the equations used to create them.

## Equiv. Solid Thickness

The equivalent solid thickness of the wall specified, depending on reinforcement spacing and status of solid grouting, is recalled from an internal table of values.

## Em

The modulus of elasticity used is calculated as either (1000-or-750) * f'm. If special inspection is not used, Em is not reduced by $1 / 2$.
n - Es / Em

## Wall Weight

These include the wall weight from mid height of Clear Height to the top of the Parapet.

## As, np, $\mathbf{k}, \mathbf{j}, \mathbf{2} / \mathbf{k j}$, Radius of Gyration, Moment of Inertia

These are additional design values for your reference.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


Sample Printout

ENERCALC Engineering Software		Title: ENERCALC Example Problems
P.O. Box 188	Dsgnr: MDB	
Corona del Mar, CA 92660		Description : Collection of example problems
Voice: 949-645-0151 wuw.enercalc.com	Scope:	All programs in the Structural Engineering Library
	Masonry Wall Design	Page 1 abob5lexamples eculdsamy carcs
Description Typical wall se		




### 3.2 Slender Wall

This program provides design and analysis according to the new provisions for design of masonry walls, using the P-Delta deflection considerations now included in the UBC. This method lifts the restriction on $\mathrm{H} / \mathrm{t}$ ratios, and performs wall analysis using the principles of ultimate strength design. The design method is very similar to that of the Tilt-Up Wall Panel Strip design program contained in the concrete section.

This program uses a 12" wide strip of wall section to represent a typical section of wall. All lateral loads must be adjusted so that the loads acting on the 12 " wide section are representative of actual loadings. The program has the ability to apply a lateral wind
load, seismic load, partial length uniform lateral load, and a lateral point load to the clear span of the wall section. This variety of loadings should take care of almost every lateral loading case possible.

The P-Delta design of the wall uses a two-stage deflection behavior. For further reference into this design method, please see the UBC or the revised codes from the Masonry Institute of America.

The user may specify masonry and reinforcing strengths, seismic factor, wind load, vertical and lateral loads, vertical load eccentricities, and wall construction. The program determines the wall capacity, actual deflections considering P-Delta effects, and solves for the final moments obtained through iteration of the P-Delta effects. Deflection analysis is provided for both service and factored load cases.

The user reaches a final design by modifying wall thickness, rebar size, and rebar spacing until no overstress condition exists and the deflection limits prescribed in the code are satisfied.


## Basic Usage

- Entering Stress Data will define the material strengths, grouting status, inspection status, and the values defining lateral seismic and wind loads. The Wall Weight

Factor is used as a multiplication factor on the internally stored wall weights (see specific item).

- The Wall Data section is used to enter the clear span, thickness, and reinforcing. These values can be continually modified during the design process to achieve a satisfactory design (satisfying both stress and deflection criteria).
- Vertical Loads can be applied to the wall, both eccentrically and concentrically with the wall centerline. These loads allow you to specify roof loads and additional loads due to equipment platforms or an extended wall segment above the top of the wall.
- Lateral Uniform or Point Loads can be applied to the wall strip, which can be used to simulate lintel-to-jamb loads. These lateral loads can be due to either wind or seismic forces.
- The above entries are all that are required to completely specify a wall section. Calculating the program will perform a factored load analysis for maximum moments and a service load analysis to determine maximum deflections. This analysis is executed simultaneously for both wind and seismic load cases.
- You can then proceed to Check Actual And Allowable Moments, deflection ratios, reinforcing percentages, and axial stress levels. If any are not within limits, you can modify reinforcing or wall thickness to bring the actual values into compliance.


## Unique Features

- This program provides the ability to design tall, slender masonry walls according to the latest UBC Section 2411 provisions.
- Both seismic and wind analyses are performed at once.
- You can apply additional lateral loads to the wall to model lintel-to-jamb type conditions.


## Assumptions \& Limitations

- You should be fully aware of this design procedure for masonry walls. It yields designs that give tall thin walls less reinforcing than earlier working stress methods (where Height/Thickness ratios were limited to 36).
- This program uses ultimate strength principles for the analysis and deflection determination of the wall section.
- Deflection is determined using a two stage load-deflection curve. The deflection of the wall when the moment is LESS than the cracking moment will be based on the gross moment of inertia. To obtain deflections beyond that point, the difference between actual moment and cracking moment is applied using the cracked section moment of inertia. This load-deflection behavior is based on an extensive testing program that led to the adoption of this new design method in the UBC.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.

## Data Entry Tabs

This set of tabs provides entries for all input in this calculation．While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right－hand side of the screen（calculated values，sketches，diagrams， etc．）．A recalculation is performed after any entry data is changed．After each data entry you can view the results on the right－hand set of tabs．

## General Tab

General［Loads｜	
Description Typical wall section	
Wall Height	17.500 考 ft
Thickness	$8 \quad \square$ in
Rebar Size	5 ｜
Rebar Spacing	16 in
Rebar Location	$\bigcirc$ Center © Edge
fm	1，500．0 $\frac{\text { 考 }}{} \mathrm{psi}$
Fy	60，000．0 $\frac{\text { 考 }}{} \mathrm{psi}$
fr Multiplier （moduius of rup	
Phi ．．．．	．．． 0.80
Note！Special Inspection ALWAYS Required	
Wall ：Service S similar streng	Seismic Factor Z Ip Cp －or－   gth design factor divided by $1.4 .0 \mathbf{0 . 3 0 0} \frac{2}{\square}$
Load Factoring	c 1994 \＆Earlier UBC   C $2003 \mathrm{IBC} / \mathrm{NFPA}$
Wall Wt Multipli	lier ．．．．．．．．．．． $1.000 \frac{\square}{\text { 冎 }}$
Soild Grouted？	$\Gamma$
Block Type	$C \text { Light © Medium }$

## Wall Height

The unsupported wall height is measured from the points of lateral support at the base and roof／second floor．This distance is used to determine moments in the wall due to applied lateral seismic or wind loads．

## Thickness

Wall thickness to be used in design analysis．Please enter the NOMINAL thickness；Internal tables will evaluate the actual thickness to be used in the calculations．Thickness can be 6 ＂， 8 ＂， 10 ＂， 12 ＂， 14 ＂，and 16 inches．

## Rebar Size

Enter the rebar size number which should be used. Note that rebar area is not calculated, but recalled from an internal table (\#11 and \#14 bars are not allowed).

## Rebar Spacing

This indicates the 8" Module rebar spacing to be used for design analysis.

## Rebar Location

Select Center or Edge. The actual rebar depth will automatically be retrieved from an internal table.

## f'm

This is the allowable masonry strength used in the analysis. The allowable bending and axial stresses calculated from f'm are outlined in a later section.

Fy
Enter the allowable tension strength of the reinforcing to be used. This value will be used as entered to determine the interaction equations for the design being performed.

## fr Multiplier

Enter the multiplier to be applied to f'm to calculate the modulus of rupture.
Phi
The value for Phi (capacity reduction factor) is dependent upon special inspection. 0.80 is used for inspected construction, 0.50 for uninspected. This capacity reduction factor is applied to the calculated moment capacity to take into account such factors as quality control, use, and design/analysis assumptions.

## Wall Seismic Factor

The seismic factor will be applied to the actual wall weight to generate the lateral load for seismic analysis.

## Load Factoring per Code

Select the core that will govern the internal factoring of entered loads for calculation of ultimate (factored) loads applied to the wall.

## Wall Weight Multiplier

This factor is available for you to modify the wall weight recalled from the internal tables. The value will be applied directly to the internal wall weight and the product displayed as Wall Weight.

## Solid Grouted?

Enter YES if the wall will be solid grouted (regardless of steel spacing). Entering NO specifies that cells containing vertical reinforcing will be grouted. This input effects the calculation for wall weight and equivalent solid thickness

## Block Type

This entry controls what block type is being used for determining the wall weight to be recalled from the internal tables. Select Lightweight, Medium Weight, or Normal Weight.

## Loads Tab

General Loads	
Wind Load	15．00 $\frac{4}{7} \mathrm{psf}$
Vertical Loads．．．	
Uniform Dead Load	144.00 考 \＃ft
Uniform Live Load	192.00 考 \＃$/$ t
Eccentricity	$7.000 \frac{\text { 考 in }}{}$
Load Type	c Roof $\bigcirc$ Floor
Concentric Dead Load	新 $\#$／t
Concentric Live Load	考 \＃
Load Type	C Roof C Floor
Lateral Loads．．．	
Point Load	$\stackrel{4}{7} \mathrm{lbs}$
Height	0.000 量 ft
Load Type	C Wind $\bigcirc$ Seismic
Distributed Load	25.00 考 \＃
Dist．to Top	$17.500 \frac{\square}{7} \mathrm{ft}$
Dist．to Bottom	$10.000 \frac{4}{\square} \mathrm{ft}$
Load Type	$C$ Wind c Seismic

## Wind Load

Enter the wind load（in psf）that should be applied laterally to the full height of the wall．This load will be combined with any added lateral loads that are specified as Wind．

## Vertical Loads

## Uniform Loads

These uniform loads are applied to the wall at the specified eccentricity．The program resolves this loading to an axial load and concentrated moment applied at the top of the Unsupported Height．The concentrated moment is always ADDED to the moments created from wind and seismic forces，and decreases to zero at the lower lateral support．This load is included in both bending and axial load computations．

## Uniform Load Eccentricity

The user may specify that the uniform dead and live load is applied at an eccentricity．When determining maximum moments，the moment created by this eccentric load is always ADDED to the lateral load moments，regardless of whether eccentricity is positive or negative．

## Concentric

You can specify an axial load applied to the top of the wall, such as load carried down from a floor above or just an added load. This load is considered axial stress only. (No P-Delta moments calculated).

## Lateral Loads

## Point Lateral Load

This load is applied to the 12 " wide strip of wall in addition to the lateral load due to wind and seismic forces. If it is a seismic load, the value should be entered after applying the code specified seismic factor. This additional lateral load is intended to enable the user to model a section of wall or Jamb Strip when additional loads are applied to it (e.g. from a lintel contributing lateral wind/seismic load to a jamb strip through a horizontal bond beam at the opening head).

## Height From Base

Enter the distance from the bottom of the wall to point of application of the concentrated point load.

## Point Type: Wind/Seismic

This specifies whether this added point load is due to seismic or wind forces.

## Uniform Lateral Load

This load is applied to the 12 " wide strip of wall in addition to the lateral load due to wind or seismic forces. For seismic loads, it should be entered after applying the code required seismic factor. This additional lateral load enables the user to model a section of wall or jamb strip when additional loads are applied to it, (i.e. due to a lintel spanning horizontally, constructed integrally with the wall).

## X-distance To Bottom

Enter the distance from the bottom of the wall to the start of the uniform lateral load.

## X-Distance To Top

Enter the distance from the bottom of the wall to the end of the uniform lateral load. This height will be automatically limited to Unsupported Height if it has been specified as greater.

## Uniform Type: Wind/Seismic

This specifies whether this added uniform lateral load is due to seismic or wind forces.

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results / Summary Tab



M-n * Phi
From the analysis presented in the section titled Analysis Values, the maximum moment capacity of the wall for both seismic and wind loading is displayed.

## M-u

From the analysis to follow, the maximum factored load moment acting on the wall from both seismic and wind loads is displayed.

## Maximum Overstress

If the wall section you have specified exceeds the actual moment, the percentage of overstress is listed.

## Maximum Allowable Deflection

The maximum allowable deflection per code is .007 * Clear Wall Height (distance between lateral supports). Your design should always be checked so that this requirement is satisfied, since the deflection limitation design philosophy is the primary factor allowing slender masonry walls.

## Max. Iterated Service Deflection

This is the calculated deflection at the mid-height of the wall using service loads. The program
calculates this deflection by iterating P-Delta moments and the resulting increase in deflections caused by these moments.

## Actual Ht /Service Deflection

For both seismic and wind loading cases, the clear wall height is divided by the Service Load Deflection @ Convergence.

## Actual Reinf. \%

This is the actual reinforcing percentage ratio for the rebar and wall thickness specified.

## Allowable \%

This is the maximum allowable steel percentage by UBC code and varies with grade of steel.

## Actual Axial Load

This is the actual axial stress on the 12 " wide strip, caused by the applied vertical loads and wall weight ABOVE mid-height. When the wall is partially grouted, the equivalent solid thickness is used to calculated the area instead of the actual wall thickness.

## Allowable Axial Load

The allowable axial load that can be imposed on the 12 " wall section subjected to bending is .04 * f'm * AGROSS. This allowable axial load is listed here for comparison with the actual value listed below. The designer should always verify that this allowable load is greater than the actual load.

## Results / P-Delta Analysis Tab

| Results \|Sketch | Printing| |  |  |
| :---: | :---: | :---: |
| Summary P-Delta Analysis \|Analysis Values |  |  |
| Factored Load Analysis | Seismic | Wind |
| Basic Moment without P-Delta | 19,648.97 | 9,411.41 in-\# |
| Basic Deflection without P-Delta | 0.44 | 0.08 in |
| Moment in excess of Cracking Moment | 9,738.96 | 0.00 in-\# |
| Max. Iterated Wall Deflection | 0.44 | 0.08 in |
| Max. Iterated Wall Moment | 19,870.80 | 9,463.04 in-\# |
| Static Load Analysis | Seismic | Wind |
| Basic Moment without P-Delta | 13,964.70 | 7,394.62 in-\# |
| Basic Deflection without P-Delta | 0.23 | 0.06 in |
| Moment in excess of Cracking Moment | 4,054.69 | 0.00 in-\# |
| Max. Iterated Wall Deflection | 0.24 | 0.06 in |
| Max. Iterated Wall Moment | 14,096.14 | 7,439.73 in-\# |

## Factored and Service Load Stress Analysis

These two sections provide the details of the iterative analysis of the wall section using factored and service loads. The factored load analysis is used to determine maximum moments in the wall, accrued by iterative recalculation of deflections and their effect on P-Delta moments.
The service load analysis uses unfactored loads to iterate wall deflections and moments. The Height/Service Deflection ratio will be checked against the allowable limit.
Both methods follow the same procedure; calculate moment, calculate deflection, and then recalculate wall moments. UBC formula 11-7 is used to calculate moments and deflections:
$\mathrm{MU}=\mathrm{WU} * \mathrm{H} 2 / 8+\mathrm{POU} * \mathrm{e} / 2+(\mathrm{PWU}+\mathrm{POU}) * \mathrm{DU}$
DS-MAX <= 0.007 * Wall Height
DS $\quad=5 *$ MCRACKED*h2/(48*EM*IG) $+5 *(M S-M C R) * h 2 /(48 * E M * I C R))$
The second term of the deflection equation is ignored when negative.

## Basic Moment w/o P-delta

This is the mid-height moment induced from lateral seismic and wind loads and roof loads applied at an eccentricity before addition of P-Delta effects.

## Basic Deflection w/o P-delta

Basic deflection is calculated using the basic moments applied to the equation presented above. For
moments up to the cracking moment, the gross moment of inertia is used to find deflection. For any portion of the moment that exceeds the cracking moment, the cracked section moment of inertia is used to determine additional deflections.

## Basic Deflection w/o Excess Moment

If the basic moment is greater than the cracking moment (SGROSS*FR), the excess portion must be identified so a proper deflection analysis can be performed.

## Maximum Iterated Deflection

After the repeated iteration of moment and deflection, the final value of deflection (that causes negligible additional deflection) is listed here.

## Maximum Iterated Moment

The total moment at deflection convergence is calculated by iteration. Starting with the basic load deflection, the P-Delta moment is found and a subsequent deflection calculated (using the same "compound" moment of inertia method).

## Results / Analysis Values Tab

The following values are used for the design and analysis of slender masonry walls. All of these values apply for both wind and seismic analysis with the exception of Moment of Inertia:Effective, which is different due to different AsEFF values being based on different factored axial loads.

| Results \|Sketch Printing| |  |  |
| :---: | :---: | :---: |
| Summany P-Delta Analysis Analysis Values |  |  |
| Equivalent Solid Thickness |  | 5.80 in |
| Gross Area | . . . | 69.60 in |
| A-steel |  | 0.23 in2 |
| As - Percent |  | 0.0037 |
| As-Effective $=\left(\mathrm{Pu}+\mathrm{As}^{*} \mathrm{Fy}\right) / \mathrm{Fy}$ |  |  |
| As-eff : Wind |  | 0.245 in 2 |
| As-eff : Seismic |  | 0.245 in2 |
| 'a' : Compression Block |  |  |
| 'a' : Wind |  | 0.96 in |
| 'a' : Seismic |  | 0.96 in |
| Rebar "d" Distance |  | 5.25 in |
| Wall Weight |  | 63.00 psf |
| Wall Weight * Seismic Factor |  | 18.90 psf |
| $\mathrm{Mn}=\mathrm{Phi}^{*}$ As-eff ${ }^{*} \mathrm{Fy}{ }^{*}(\mathrm{~d}-\mathrm{a} / 2)$ |  |  |
| Wind |  | 54,972.60 in-\# |
| Seismic |  | 54,972.60 in-\# |
| $\mathrm{Em}=900$ * fm |  | 1,350,000 psi |
| $\mathrm{n}=29 \mathrm{E} 6 / \mathrm{Em}$ |  | 21.48 |
| $\mathrm{Fr}=2.5$ * (fm) ${ }^{\text {n }} 5$ |  | 96.82 psi |
| Sgross |  | 102.35 in3 |
| Mcracking = Sgross * Fr |  | 9,910.01 in-\# |
| I-Gross |  | $390.21 \mathrm{in4}$ |
| I-Cracked - Wind |  | 95.02 in 4 |
| I-Cracked - Seismic |  | $95.02 \mathrm{in4}$ |
| Phi: Wind = 0.800 | Phi: Seismic = | $=0.800$ |

## Equivalent Thickness

The equivalent solid thickness depends upon NOMINAL the wall thickness and rebar spacing, and is obtained from a table stored within the program. When the wall has been specified as solid grouted (see item previous), this thickness is equal to the actual, not nominal, wall thickness. Please see table on page M-8

## Gross Area

Gross area of the 12" wide strip equals Equivalent Solid Thickness * 12".
As
Reinforcing steel area in a 12 " length of wall.

## Asteel/Agross

This value is: As/Awall-EFFECTIVE

## As-eff.

This is the steel reinforcing area in a 12" length of wall modified for the effect of axial load using the

UBC equation specified in section 2312:

$$
A S-E F F=(A S * f Y+P U) / f Y
$$

"a"
This is the typical ACI equation for determining the depth of the equivalent compressive stress block used for analysis.

Mn
This is the calculated maximum moment capacity of the section whose values for allowable stresses, reinforcing size and spacing, and effective area of steel are given.

Em
The modulus of elasticity for masonry is calculated as:

$$
\mathrm{EM}=750 * \mathrm{f}^{\prime} \mathrm{m}
$$

Fr
The modulus of rupture is calculated by multiplying the value you've entered by $\mathrm{f}^{\prime} \mathrm{m} 1 / 2$

## S-gross

Gross section modulus for 12 " of wall width :

$$
\text { 12" * (Actual Wall Thickness)2 / } 6
$$

$\mathbf{S}$ * $\mathbf{F r}$
This is the Cracking Moment, the maximum moment the wall can take as a solid section without any reinforcing.

## Igross \& Icracked

Gross and cracked section moduli of the wall to be used in the deflection analysis.

## Wall Weight

The wall weight is automatically recalled from an internal table of weights, considering rebar spacing, wall thickness, and status of solid grouting. The table is based on light, medium, and normal weight block.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


## Sample Printout




### 3.3 Masonry Column

This program provides design and analysis for masonry columns, subjected to a combination of eccentric vertical and lateral loads due to seismic or wind forces.

You can apply an eccentric girder load to the top of the column, general uniform lateral
loads, and specify that tributary wall seismic and wind forces must be applied to the column. The program performs analysis of all combinations of dead, live, wind, and seismic forces to generate moments, stresses, and final design interaction values.

The user may specify allowable masonry and steel stresses, special inspection, seismic factor, wind load, unit weight of column material, unsupported height of column, and number and size of rebar at each face.

The analysis calculates allowable axial stresses considering both masonry and reinforcing capacities, and checks both steel and masonry bending stresses before combining them in the interaction values.


## Basic Usage

- The Design Data section is used to define material strengths, special inspection status, seismic and wind factors, and column weights. These values allow you to design a variety of column types subjected to lateral and vertical loads.
- Loading Data defines the girder load and eccentricity applied to the top of the column. In addition, you may apply an Additional Lateral Load acting over all or a portion of the column. This is in addition to the automatically applied wind and column weight seismic loads.
- The Column Data section is where you specify column height, dimensions, and reinforcing. You will continuously modify these values while recalculating to generate
an acceptable design.


## Unique Features

- This program permits quick and easy evaluation of a masonry column subjected to a variety of forces, with varying materials and reinforcing.
- Both wind and seismic analysis is performed with each recalculation.
- The column can easily be checked for support of tributary lateral loads from an attached wall, when the wall spans between columns and the columns are used to transfer load to top and bottom boundary elements.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams,
etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab



## Column Height

The effective height is measured from the point of lateral support at the floor to point of lateral support at the roof. This distance is used to determine all moments in the wall by simple span between floor and roof. If the column has no top lateral support ("cantilevered"), this height should already be adjusted by the typical column "K" factor.

## Column Width

Enter the column width measured parallel to the bending axis.

## Column Depth

This is the depth (strong axis) of the column, measured perpendicular to the axis of bending.

## Gross Column Area

Gross column area equals the (depth - 5/8") * (width - 5/8").

## Rebar Size \#

Enter rebar size to be used at each face.

## Bar Count Each Face

Enter number of bars considered effective at each face of the column.

## Rebar Depth

Enter the effective reinforcing depth to be used for calculation of bending capacity of the column. This value will automatically be internally limited to (Nominal Depth $-0.625^{\prime \prime}-1.5^{\prime \prime}$ )

## f'm

Enter the allowable masonry strength to be used in the analysis. The allowable bending and axial stresses calculated from F'm are outlined in a later section. If the user has chosen not to use special inspection, both allowable axial and bending stresses will be multiplied by $1 / 2$.

Fs
Enter the allowable tension strength of the reinforcing to be used. This value will be used as entered to determine the interaction equations for the design being performed.

## Em $=\mathbf{f}^{\prime} \mathbf{m}$ * Multiplier

This value is multiplied by f'm to calculate the modulus of elasticity for masonry. You may enter different values here to have the Em and subsequent $n$ values altered.

## Special Inspection

In this location, specify 1 " if special inspection will be used, allowing full f'm based masonry stresses to be used. Entering " 0 " specifies that no special Inspection will be performed, and all allowable stresses will be reduced by $1 / 2$.

## '94 UBC Seismic Factor

Enter the seismic factor to be applied to the wall/column weight when calculating the lateral moment. This value is usually the result of the UBC formula "ZICp".

## Seismic Zone

Enter the UBC Seismic Zone.

## Column Unit Density

You may enter the unit weight of the column material. The exact unit weight may be specified here, depending on use of light, medium, or normal weight block/grout, or weights gathered from test reports.

## Load Duration Factor

This entry is used as the maximum interaction value that all load combinations that include wind or seismic load must be less than or equal to.

## Loads Tab

General Loads	
Wind Load	15.000 考 psf
Vertical Load	
Dead Load	7.250 考 k
Live Load	4.550 考 $k$
Eccentricity	6.000 者 in
Load Type	C Floor
Lateral Load	50.000 青 \＃\＃ft
Distance to bottom	2.000 者 ft
Distance to top	12.000 者 ft
Load Type ．．．．	d C Seismic

## Wind Load

Enter the wind load acting on the column width．The moment created from this load will be combined with eccentric girder load moment to determine the final lateral wind moment．

## Vertical Dead \＆Live Load

The user specifies an axial dead and live load applied at the top of the column．This load is used to determine the concentrated moment at the top of the column（and decreases linearly to zero at the bottom of the column）．

## Load Eccentricity

The user can specify that the girder load is applied to the column at an eccentricity．When determining maximum moments，the moment created by the girder load is always added to the lateral load moments，regardless of whether eccentricity is positive or negative．This load is included in both bending and axial load computations．

## Load Type

This indicates whether the vertical load is a floor or roof load．This distinction is important because only floor loads are added to seismic or wind loads for the analysis．

## Lateral Loads

Applied laterally to the column to create simple bending moments．This load will be applied to the column as is（no further load factoring will be performed），and is in addition to the wind or seismic load．

## Top \＆Bottom Distances

These two entries define the starting and ending point of the load with respect to the bottom of the column．

## Load Type

This flag instructs the program how to include the additional uniform load into the lateral loads （whether into wind or seismic load cases）．

## Results \＆Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results / Summary Tab

| Results \|Sketch | Printing| |  |  |
| :---: | :---: | :---: |
| Summary \|Design Values |  |  |
| Max. Bending + Axial Comp. Stress Allowable |  | $\begin{aligned} & 264.58 \mathrm{psi} \\ & 500.00 \text { OK } \end{aligned}$ |
| Max. Axial Only Compressive Stress Allowable |  | $\begin{array}{r} 61.46 \mathrm{psi} \\ 529.66 \text { OK } \end{array}$ |
| Max Steel Bending Stress Allowable |  | 5,665.09 psi <br> 24,000.00 OK |
| Summary... |  |  |
| Vertical Loads... |  | k |
| Live | 4.55 | k |
| Total @ Mid-Ht Dead | 8.50 | k |
| Live | 4.55 | k |
| Lateral Loads... |  |  |
| Wind + Lateral | 65.00 |  |
| Seismic + Lateral | 0.00 |  |
| Combined Moments... <br> Top DL + LL | 5,900.00 | ft-\# |
| Mid: $\mathrm{DL}+\mathrm{LL}+$ Wind | 3,454.47 | ft-\# |
| Mid: DL + LL + Seismic | 3,625.00 | ft-\# |

Final Results
At the top of this tab are the final maximum values and their comparable allowables.

## Summary

This area summarizes the calculated vertical loads, lateral loads, and moments that are used for the stress analysis.

## Results / Design Values Tab

## Results $\mid$ Sketch $\mid$ Printing $\mid$ <br> Summary Design Values

Top of Column			Bending Stresses		Axial
	Moment	Axial	Steel	Masonny	Stress
	ft-\#	lbs	psi	psi	psi
DL+LL	5,900.0	11,800.0	5.665.1	203.12	61.46

Btwn Base \& Top of Column

DL+LL+W	$3,454.5$	8.500 .0	$3,316.9$	118.93	44.27
DL+LL+S	3.625 .0	8.500 .0	3.480 .7	124.80	44.27


Allowable Steel Tension	24,000.00 psi
Fa: [.25*Pm*Aseff* $(5 \text { wo sp. insp. })^{*}(.5$ if thk $<12$ " $)$ +65 * as *Fsc] * [1-(h/140r) $\left.{ }^{\star} 2\right]$	529.66 psi
Fb:Masonnv: 0.33 * fm * ( 5 w/o sp. insp) $<=2000$	500.00 psi
Max Allow Moment w/o Axial Load	14,377.89 f-\#
Max. Allow Axial Load w/o Moment	101.69 k
E	1,125,000 psi
Radius of Gyration	4.511 in
np	0.22198
k	0.48032
j	0.83989
$2 / \mathrm{kj}$	4.95761
n	25.778

## Top of Column

This area displays the calculated moment, axial load, and stresses at the to of the column. The moments are the result of axial load eccentricity.

## Between Base and Top Of Column

This area summarizes the calculated moment, axial loads, and stresses when two different load combinations are used to calculate moments between the top and bottom of the wall (simply span beam moments) due to axial load eccentricity and lateral loads.

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


## Sample Printout

## ENERCALC Engineering Software <br> P.O. BOX 188 <br> Corona del Mar, CA 92660 <br> Voice: 949-645-0151

www.enercalc.com

Title: ENERCALC Example Problems Job \# 97-000001
Dsgnr: MDB Date: 6.06PM, 280 CT 03
Description : Collection of example problems

Scope: All programs in the Structural Engineering Library

Four ssoox  	Masonry Column Desing..	Page 11
Description Column w	ater load: $2^{\prime}$->> 12'	


General Inform ation				Coderet.ACI 530-02	
coumn Heitht	$15.000 \pi$	Tm	1,500.00 psi	Selsmic Factor	00000
Width	12.000 in	Fs	24,000.00 psi	Seismic Zone	0
Depth	16.000 in	Em $=$ f $\mathrm{m}^{*}$	750.0	Wall Density	125.000 pcf
Column Area	192.00 in 2			Load Duration Factor	1.330
Rebar Size	5			Special Inspection	
Bar Count Each Face	4				
...rebar area	1.240 in 2				
Rebae Depth	9.875 in				


Applied Loads					
Vertica Load    Dead Load 10.00 k   Live Load 10.00 k   eccentritity 6.000 in   Load Type Roof		Lateral Load   distance to bottom distance to top Load Type   Wind Load		$\begin{aligned} & 50.00 \text { ₹it } \\ & 2000 \mathrm{ft} \\ & 12000 \mathrm{f} \\ & \text { Whd } \\ & 15.00 \mathrm{pst} \end{aligned}$	
Design Values					
Allorrable Steel Tension	24,000.00 psi	np	0.26974	i	0.82909
	52966 psi	k	0.51272	$\begin{aligned} & 2 / \mathrm{kj} \\ & \pi \end{aligned}$	$\begin{array}{r} 4.70486 \\ 25.778 \end{array}$
Fb:Masonry: $0.337 \mathrm{~m}^{*}(5 \mathrm{wfo} \mathrm{sp} \mathrm{insp)}>=2000$	500.00 psi	E		1,125,000 psi	
Max Allow Homent wo Axial Load Max. Allow Axial Load wio Moment	$\begin{gathered} 10,259.64 \mathrm{ft}-\neq \\ 101.69 \mathrm{k} \end{gathered}$				

## Load Combinations \& Stress Details Sum mary

Top of Wall	$\underset{f f-\dot{f}}{\substack{\text { Moment }}}$	Bending Stresses			
		Axial lbs	Steel psi	Masonry   psi	Axial Stress psi
Dead + Lre Load	10000.0	20.000 .0	11.820 .0	48247	104.17
Btwn Base \& Top of Wall					
Dead + Lire + Wind	4.132 .8	11,250.0	4.885 .0	199.40	58.59
Dead + Live + Seismic	50000	11,2500	5.910 .0	241.24	58.59

```
Summary
 Pilaster Overstressed
 15ft high column, Width= 12.000in, Depth= 16.000in Using 4 - #5 bars at 'd' = 9.88in
 Max. Bending + Axial Comp. Stress 586.64 psi
 Allowable
 Max.Axial Only Compressive Stress
 104.17 psi
 Allowable
 529.66 OK
 Max Steel Bending Stress 11,820.04 psi
 Allowable24,000.00 OK
```



### 3.4 Flush Wall Pilaster

This program provides design and analysis of columns contained entirely within the thickness of a masonry wall. The column may be subjected to a combination of eccentric vertical loads and lateral loads due to seismic or wind forces.

Loading conditions include a dead and live girder load applied to a bearing seat, dead and live uniform load applied eccentrically to the top of the wall, and lateral loads due to wind and seismic forces.

The user may specify allowable masonry and steel stresses, status of special inspection, status of solid grouting, seismic factor, wind load, and bearing plate dimensions, wall
thickness, rebar size and spacing, rebar location, and wall span data.
All axial load and bending moment stresses are calculated and combined using the interaction equation. Combined stresses at the top of the pilaster and at mid-height are checked.


## Basic Usage

- In the section titled Design Data, enter the material strengths and inspection status for the wall. Seismic Factor and Wind Load are both used to generate lateral loads applied to the wall. The resulting moments are detailed in the Summary section. You must also enter a Bearing Plate Length to be used to spread the applied vertical load out over an effective width of the pilaster.
- The Loading Data section allows you to apply eccentric vertical uniform roof or floor loads and a concentrated girder load. You can use either or both of these entries to apply vertical load to the pilaster.
- Pilaster Data defines the clear span, thickness, and reinforcing for the flush wall pilaster. You typically modify these three values while recalculating to reach the final pilaster design. You can place the rebar at the Center or Edge of the wall.
- The above entries are all that is required to completely specify a wall section. Calculating the program will perform the analysis for maximum bending and axial stresses. The analysis always produces results for both wind and seismic load cases.
- You can then proceed to Check Actual And Allowable Moments, deflection ratios, reinforcing percentages, and axial stress levels. If any are not within limits, you can modify reinforcing or wall thickness to bring the actual values into compliance.
- When finished, Print or Save the data for the current calculation, Reset all the program values to zero for a new problem, or use the Access Menu to use another program.


## Unique Features

- This program permits quick evaluation of a flush wall pilaster subjected to a variety of forces, with varying materials and reinforcing.
- Both seismic and wind analysis is provided.
- Detailed bending and axial stress results are supplied for various load combinations at the top of the column and mid-height.


## Assumptions \& Limitations

- P-Delta effects are not considered. The conventional formulas for evaluating allowable axial and bending stresses in masonry are used, based on the U.B.C. and similar codes.
- Girder loads and uniform vertical loads are both applied to the pilaster at the same elevation.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


Bearing Plate

$D L=10 ., L L=20 . \# / t, E c c=7.31 \mathrm{in}$

Wind Load

## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab



## Pilaster Height

The effective height is measured from the points of lateral support at the floor and roof/second floor. This distance is used to determine moments in the wall due to applied lateral seismic and wind loads. For flush-wall columns in walls with no top support, use this entry to specify the effective column height (height adjusted by K factor for columns).

## Wall Thickness

Enter the nominal wall thickness you are using or estimate what will be needed. A table of $d$ values, equivalent solid thicknesses, and weights are stored in the program, and the appropriate value will be selected based upon nominal wall thickness. Thickness values of 6 ", 8 ", 10 ", 12 ", 14 ", and 16 " are allowed.

## Rebar Size

The user enters choice of rebar to be used in the analysis (\#14 \& \#18 bars will be ignored).

## Rebar Spacing

The rebar spacing entered here applies to the rebar size entered above. Please be sure to enter the
spacing as it applies to the block modules being used! Rebar spacings of 8 ", 16 ", 24 ", 32 ", 40 ", and 48 " are allowed.

## Rebar Location

Enter a 0 " if the vertical reinforcement will be located at the centerline of the wall, or a 1 " if it will be located at the outside edge. NOTE: If reinforcing is stated to be at each face, the compression face reinforcing will not be used in the evaluation of bending capacity (only one bar at the d distance for bar placed at each face will be used).

## Block Type

This entry controls what block type is being used for determining the wall weight to be recalled from the internal tables. Select Lightweight, Medium Weight, or Normal Weight.

## Bearing Plate Width

This represents the width of the bearing plate (measured perpendicular to the wall) which the girder will rest upon. From this width, the required Bearing Length will be calculated, thus determining the $b$ for the assumed pilaster width.

## Bearing Plate Width

Is Plate Area < ( Total Area / 3) ?

## Column Width Used

This is the assumed total width of the flush wall pilaster to be used for the balance of the design. It is equal to length of bearing plus four times the wall thickness. If desired, the user can enter another value here, in such cases where a narrower pilaster width is required.

## Seismic Factor

Enter the seismic factor to be applied to the wall/pilaster weight when calculating the lateral moment.

## Seismic Zone

Enter the UBC Seismic Zone

## Solid Grouted

Check this box if the wall is solid grouted. Otherwise it is assumed that grouting is at cells with reinforcing only.
This entry is used as the maximum interaction value that all load combinations (that include wind or seismic load) must be less than or equal to.

## Material Tab



## f'm

Enter the allowable masonry strength to be used in the analysis. The allowable bending and axial stresses calculated from F'm are outlined in a later section. If the user has chosen to use $1 / 2$ stresses, both allowable axial and bending stresses will be multiplied by $1 / 2$.

Fs
Enter the allowable tension strength of the reinforcing to be used. This value will be used as entered to determine the interaction equations for the design being performed.

## "n" Multiplier

This value is multiplied by f'm to calculate the modulus of elasticity for masonry. You may enter different values here to have the Em and subsequently n values altered.

## Em

The modulus of elasticity used is calculated as $n$ Multiplier * $\mathrm{f}^{\prime} \mathrm{m}$. If special inspection is not used, Em is not reduced by $1 / 2$.

## n: Es/Em

This is the ratio of steel modulus Es ( $29 \times 106$ ) divided by Em as calculated above.

## Special Inspection

Check the box to specify that Special Inspection will be used, therefore allowing full F'm based masonry stresses to be used, otherwise and a multiplier of $1 / 2$ will be applied to F'm based allowable stresses.

## Applied Loads Tab



## Girder Load

Dead Load	4,610.00 ${ }_{\text {- }}^{\text {a }} \mathrm{lbs}$
Live Load	4,390.00 ${ }_{\text {考 }} \mathrm{lbs}$
...eccentricity	$1.300 \frac{4}{7} \mathrm{in}$
Load Type	of Floor

```
Wind Load ...
```

$18.000 \div \frac{\operatorname{t}}{\boldsymbol{7}} \mathrm{psf}$

## Uniform Loads

Uniform loads can be applied to the effective width of the flush wall pilaster at the specified eccentricity. The program resolves this loading to an axial load and concentrated moment applied at the location of Clear Span Height. The concentrated moment is assumed to decrease to zero at the lower lateral support, and is included in both bending and axial load computations

## Uniform Load Eccentricity

The user may specify that the uniform loads are applied at an eccentricity to the pilaster centerline. When determining maximum moments, the moment created by the uniform load is always ADDED to the lateral load moments, REGARDLESS OF WHETHER ECCENTRICITY IS POSITIVE OR NEGATIVE.

## Girder Loads

You can also specify an axial load applied to the top of the column. This load is used to determine concentrated moment at the top of the column, $1 / 2$ of which is considered effective at mid-height. This load is applied to the pilaster via the Bearing Plate, whose length determines the effective length of the pilaster.

## Girder Load Eccentricity

The user can specify that the girder load is applied to the column at an eccentricity. When determining maximum moments, the moment created by the girder load is always added to the lateral load moments, regardless whether eccentricity is positive or negative. This load is included in both bending and axial load computations.

## Wind Load

Enter the wind load acting on the Pilaster Width. The moment created from this load will be combined with eccentric girder load moment to determine the final mid-height moment.

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results / Summary Tab



## Results / Design Values Tab

Results Sketch \| Printing	
Summary Design Values $\mid$ Load Summary	
Allow Brg. Stress	285.00 psi
Allow Axial Stress	183.49 psi
Reduction Factor	0.782
Allow Masonry Bending Stress	247.50 psi
Max. Allow Moment w/o Axial Load	4,122.08 f-\#
Max. Axial Load w/o Moment	47,561.49 f-\#
Rebar Area	1.876 in2
Rebar Depth	5.250 in
Equivalent Solid Thickness	7.600 in
Moment of Inertia	443.32 in 4
Radius of Gyration	2.20 in
np	0.2701
j .	0.8290
k	0.5129
$2 / \mathrm{kj}$	4.7035
Pilaster Weight	78.000 psf

## Allowable Bearing Stress

The allowable bearing stress under the girder bearing plate, based on f'm and APLATE $<=0.33$

## Allow Axial Stress

This is equal to: . 26 * f'm * (. $5 \mathrm{w} / \mathrm{o} \mathrm{sp}. \mathrm{insp)} \mathrm{when} \mathrm{the} \mathrm{plate} \mathrm{area} \mathrm{is} \mathrm{greater} \mathrm{than} 1 /$.3 ATOT and 0.38

* $\mathrm{f}^{\prime} \mathrm{m}$ * (. $5 \mathrm{w} / \mathrm{o} \mathrm{sp}$. insp.) when the plate area is less than $1 / 3$ ATOT.


## Reduction Factor

Equals : (1- (h/42t)3)

## Allowable Masonry Bending Stresses

Equals the code specified allowable compressive stress in bending for masonry.

$$
\mathrm{fb}=.333 \mathrm{f}^{\prime} \mathrm{m} *(.5 \mathrm{w} / \mathrm{o} \text { sp. insp. })<=2,000 .
$$

## Max. Allow. Moment w/o Axial

This equals the maximum moment capacity of the wall section if no axial load acted to reduce the capacity.

## Max. Allow. Axial w/o Moment

This equals the maximum axial capacity of the wall section if no bending load acted to reduce the capacity.

## Rebar Area

Based upon the specified rebar size number and spacing, the equivalent rebar area per foot of wall length is given. Rebar area is recalled from an internal table.

## Rebar Depth

From the selected wall thickness and center or edge location, the appropriate $d$ is selected from an internally stored table.

## Equivalent Solid Thickness

Using the wall thickness and rebar spacing and solid grouting selection the equivalent thickness of the wall is given which takes into account the void spaces. For a solid grouted wall the result would eb the actual wall thickness.

## Moment of Inertia, Radius of Gyration, np, j, k, 2.kj

Calculated values of the wall used for stability and allowable axial stress calculations.

## Pilaster Weight

The wall weight is automatically recalled from an internal table of weights, considering rebar spacing, wall thickness, and status of solid grouting. The table is based on normal weight block, not lightweight or medium weight.

## Results / Load Summary Tab

This tab summarizes the axial loads and moments that have been calculated for the critical sections of the wall where maximum design stresses are evaluated.

Results Sketch $^{\text {Printing }}$				
Summary $\mid$ Design Values Load Summary				
Girder + Uniform Dead Loads				4,638.42 lbs
Girder + Uniform Live Loads				4,446.84 lbs
Pilastr Weight @ Mid-Height				1,330.11 lbs
Girder DL Moments   Girder LL Moments			(a) TOW	(a) Mid-Ht
			499.4	249.7
			475.6	237.8
DL Moments@mid-height   LL Moments @ mid-height				$8.66 \mathrm{ft-} \mathrm{\#}$
				$17.31 \mathrm{ft-} \mathrm{\#}$
Wind Moment @ Mid-Ht .   Seismic Moment @Mid-Ht				$920.84 \mathrm{ft-} \mathrm{\#}$
				1,197.09 ft-\#

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


## Sample Printout

ENERCALC Engineering Software
P.O. BoX 188

Corona del Mar, CA 92660
Voice: 949-645-0151
www.enercalc.com

R21: 650c0  	Mas onry Flush Wall Pilaster/Column	$\begin{array}{r} \text { Page } 1 \\ \text { oxac5antipetesun } \end{array}$

Description Wall section taking girder loads \& uniform ecc loads


Summary of Loads \& Moments

Gider + Uniform DeadLoads	$4,65000 \mathrm{bs}$		(4) TOW	@ Mid-H1
Grder + Uniform Live Loads	4,470.00 lbs	Girder DC. Momerts Girder LL Momerts	$\begin{aligned} & 499.4 \\ & 475.6 \end{aligned}$	$\begin{aligned} & 249.7 \text { t-z } \\ & 237.8 \text { t- } \end{aligned}$
DL Momerts 9 mid-heigtt LLAoments $@$ mid-height	$\begin{aligned} & 12.18 \mathrm{f}-\mathrm{\#} \\ & 24.37 \mathrm{ft}-\mathrm{H} \end{aligned}$	Wind Moment (3) Mid-Ht Seisnic Monert © Mid-Ht		$\begin{aligned} & 1,296,00 \mathrm{t} \text {-z } \\ & 1,684,80 \mathrm{t}-\mathrm{z} \end{aligned}$

### 3.5 Shear Piers

This program provides design and analysis ability for masonry shear wall sections subject to in-plane lateral loads (parallel to their length). You can model a series of shear pier segments that will each carry a percentage of an applied lateral force based upon the relative rigidities of each segment.

A maximum of five shear piers may be specified, each with its own length, height, thickness, and fixity conditions. Also, each of these piers may have individual allowable stresses for conditions where higher strengths are required for specialized designs of highly stressed sections. A load duration factor can be entered for stress adjustments when the nature of loading changes.

The program automatically determines individual pier stiffness's and distributes an overall single applied lateral load to each pier. Unit shear forces, design shear forces, and bending moments in each pier are calculated and used to determine the required shear and end reinforcing.


## Basic Usage

- First, enter the Total Lateral Load to be applied to the group of shear piers, including the load contributed by the wall. This load will be distributed to each pier
in proportion to their relative rigidities. The Load Duration Factor is used to modify the allowable stresses.
- The Design Data section provides all data entries for the group of piers. Pier Height, Length, and Thickness define the pier dimensions to be used for rigidity calculation and stress/reinforcing evaluation. The " j " entry is used to design the wall's stress block depth, used to calculate shear and bending depths. Fixity Code defines the end restraint condition of the wall and effects the rigidity calculations. You can also specify Special Inspection and Grouted Cell Spacing, both of which will effect the allowable stresses for both shear and bending.
- After all data has been entered, calculate the program and review the interaction values in the Summary section. You will notice that all stress components for all load combinations and locations are listed for your review. Continue to modify the Design Data and recalculate until all interaction values are below acceptable levels.


## Unique Features

- This program reduces the tedious hand calculation process of determining rigidities, calculating stresses, and then performing the whole operation over again with each refinement.
- In addition to determining forces by relative rigidities, the program determines actual and allowable shear stresses, and provides the required minimum reinforcement area as needed.
- Assumptions \& Limitations
- Because of the complexity in determining the rigidity of a wall system, this program idealizes the pier system by assuming that the wall sections providing Fixity are infinitely rigid, and do not deflect in such a manner as to alter the rigidity of adjacent piers.
- All piers are assumed to act in-line. A complex analysis of shear blocks and combined effects of openings \& shear blocks is not performed.
- Self-weight of the wall is not automatically included for seismic in plane load, and must be included in the total applied load.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.
(1) 8.0 in Thick, Pin-Fix, Cells grouted at 24 . in, Pier Load $=0.53 \mathrm{k}$
(2) 8.0 in Thick, Pin-Fix, Cells grouted at 24. in, Pier Load $=2.02 \mathrm{k}$
(3) 8.0 in Thick, Pin-Fix, Cells grouted at 8 . in, Pier Load $=15.10 \mathrm{k}$
(4) 8.0 in Thick, Pin-Fix, Cells grouted at 24. in, Pier Load $=16.47 \mathrm{k}$
(4) 8.0 in Thick, Pin-Fix, Cells grouted at 24. in, Pier Load $=1.07 \mathrm{k}$


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab

General \|Shear Pier Data		
Description	Four pier assembly	
Total Lateral Force		$35.20 \frac{4}{7}$
Seismic Zone		4
Load Duration Factor		1.330
Moduli: Em= fm*		750.0
Use Grouting at Face Shells Only?		$\Gamma$

## Total Lateral Force

Enter the total lateral force, acting parallel to the piers, which will be distributed to each pier. Distribution is by relative rigidities.

## Seismic Zone

Enter the UBC Seismic Zone.

## Load Duration Factor

This factor will be applied to the f'm and Fs values to give the allowables to be used in the analysis.

## Moduli: Em = f'm * (entry)

In masonry construction the value of Em (Elastic Modulus of the masonry) is calculated as a multiplier applied to $f^{\prime} m$. Enter that multiplier here.

## Use Grouting at Face Shells Only?

This item tells the program whether to calculate equivalent solid thickness using just the face cells with grout in the bedding or that all block surfaces that mate with the next block above or below have a grout bed.

## Shear Pier Data Tab



## Pier Height

This value of pier height will be used to calculate the rigidity and bending moment of each pier. This should be measured in a direction perpendicular to the direction of applied lateral loads.

## Pier Length

This length should be measured in a direction parallel to the applied lateral loads, and will be used to determine rigidity, unit shear, and d distances for calculating required shear and bending reinforcement.

## Pier Thickness

This thickness will be used to modify the pier rigidity by a factor of thickness/12, to adjust deflections by considering wall thickness. It will also be used to determine the actual shear stresses within the wall. Enter nominal thicknesses.
j
Because most masonry shear piers are not long bending members but actually deep beams, we have allowed the user to enter a particular j factor to be used in determining the distance from maximum tension steel to center of gravity of compression stress block. The pier length will be multiplied by j to determine the d (depth) distance from extreme compression fiber to centerline of tension steel.

## Fixity Type Code

Enter the fixity condition of each pier to be used in determining individual pier rigidities. Only Pinned-Fixed and Fixed-Fixed restraint conditions are allowed.

## f'm

Enter the allowable masonry strength to be used in the analysis. The allowable bending and axial stresses calculated from F'm are outlined in a later section. If the user has chosen not to use special inspection, both allowable axial and bending stresses will be multiplied by $1 / 2$.

Fs
Enter the allowable tension strength of the reinforcing to be used. This value will be used as entered to determine the interaction equations for the design being performed.

## Special Inspection

In this location, enter a $1^{\prime \prime}$ to specify if special inspection will be used, therefore allowing full F'm based masonry stresses to be used. Entering a 0 " specifies that special Inspection will not be performed, and a multiplier of $1 / 2$ will be applied to F'm based allowable stresses.

## Grouted Cell Spacing

This entry specifies the spacing at which the vertical cells are grouted, and controls the determination of equivalent solid thickness (recalled from an internal table).

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results / Summary Tab

Results Sketch / Printing					
Summary Analysis Data\|					
Shear Reinforcement...					
	Pier\#1	Pier \#2	Pier \#	Pier \#4	Pier \#\#5
$\mathrm{fv}_{\mathrm{V}}=\mathrm{V}\left(12^{*} \mathrm{est}^{*} \mathrm{~d} \mathrm{~d}\right)$	2.86	6.75	23.00	35.19	4.97 psi
Fv: wo Reinf.	46.55	46.55	46.55	46.55	46.55 psi
Fry w/ Reinf.	77.27	77.27	77.27	77.27	77.27 psi
Horiz. Av Req'd	Not Req'd	Not Req'd	Not Req'd	Not Req'd	ot Req'd
Bending Reinforcement...					
	Pier \#	Pier \#2	Pier \#	Pier \#4	Pier \#+5
Moment@End	9.64	36.38	181.24	197.64	17.39 k -ft
"d" to tension As	4.50	7.20	10.80	11.25	5.17 ft
Bending As Req'	0.07	0.16	0.53	0.55	0.07 in 2

$\mathbf{f v}=\mathrm{V} /(\mathbf{1 2} *$ EST $* \mathbf{j} * \mathbf{d})$
This is the actual shear stress within each pier, considering the tributary applied force, length, j , and equivalent solid thickness.

## Fv w/o Reinforcing

This is the code allowable shear stress for piers without reinforcing.

## Fv with Reinforcing

This is the code allowable shear stress for piers with reinforcing.

## Horiz. As Required

Reinforcing area required to take shear if the shear stress exceeds the Fv w/o Reinforcing value.

## Moment

Calculated moment in the pier using the tributary pier force and pier height.

## d to Tension As

This is equal to j times the pier length.

## Bending As Required

Using the bending moment calculated above, an iteration process using actual j values is executed to determine the required bending reinforcement to be located at a distance of Pier Length - 8 inches.

## Results / Analysis Data Tab

Results Sketch / Printing\|					
Summary Analysis Data					
	Pier \#	Pier \#\#2	Pier 形	Pier \#4	Pier +
Height'Length	3.6000	2.2500	1.0000	0.9600	2.8261
( $\mathrm{H} / \mathrm{L})^{4} 3$	46.6560	11.3906	1.0000	0.8847	22.5713
Rel. Defl	21.9360	5.8125	0.7778	0.7132	10.9737
Sum Rigidity	2,996.57				
Rigidity $=001 / \mathrm{Defl}$	45.587	172.043	1,285.714	1,402.100	91.127
\% Force to Pier	0.02	0.06	0.43	0.47	0.03
Shear to Pier k	0.54	2.02	15.10	16.47	1.07
Relative Pier Deflection * $10 \wedge 5$ in	0.000	0.000	0.000	0.000	0.000
M/ (V*Depth)	4.000	2.500	1.111	1.067	3.140
$\mathrm{Em}_{\mathrm{psi}}$	.125,000.0	.125,000.0	,125,000.0	,125,000.0	,125,000.0
$\mathrm{Ev}_{\mathrm{v}}=\underset{\mathrm{psi}}{0.4} * \mathrm{Em}$	450,000.0	450,000.0	450,000.0	450,000.0	450,000.0

## Height / Length

As an intermediate step in calculating the rigidity values, the two applicable height / length ratios are calculated.

## Relative Deflection

This relative deflection will be used to determine the relative rigidities using standard equations.

## Rigidity

The rigidity value of each individual pier is equal to the inverse of the stiffness.
The formulas are:

DEFL (FIXED) $=\mathrm{PH} 3 /(12 * \mathrm{Em})+1.2 \mathrm{P} \mathrm{H} /(\mathrm{Ev} *$ Area $)$
DEFL (PINNED) $=\mathrm{P} \mathrm{H} 3 /(3 * \mathrm{Em})+1.2 \mathrm{PH} /(\mathrm{Ev} *$ Area) Rigidity $=1 /$ Deflection

## Sum Rigidities

This equals the summation of the individual rigidities of all of the piers, and is used as the denominator in calculating the distribution coefficients to each individual pier.

## \% of Force per Pier

Represents the percent rigidity calculated for each pier, and will be multiplied by the Total Lateral Force to give the forces applied to each pier.

## Shear per Pier

This value is simply the \% Force Taken Per Pier * Lateral Load, and is the force taken by each pier for the analysis.

## Relative Pier Deflection

Using the calculated pier stiffness, this is the deflection that the pier will experience due to the percentage load applied to that pier.

## M/(V * Depth)

This intermediate calculation is used to determine the correct formulas used to obtain the allowable masonry shear stresses.

## Em

Shear modulus; used as a component in the rigidity calculation

Ev
Shear modulus; used as a component in the rigidity calculation

## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".

```
Results|Sketch Printing
```

Please select printout sections to be printed...


Note: When all are selected, the sottware will still omit unused sections

## Sample Printout

ENERCALC Engineering Software
P.O. Box 188

Corona del Mar, CA 92660
Voice: 949-645-0151
www.enercalc.com

Fow 5ancod (6) 1800-2003 ENERCALCETgineering Sotware	Masonry Pier Analysis \& Design	Page 1 cilew5lexamies eowisary Cales

Description Four pier assembly, varying lengths

General Information			Code Rof:ACl 530-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000		
Total Lateral Force		57.10 K		Moduli $\mathrm{Em}=\mathrm{fm}{ }^{\text {* }}$	750.00
Seismic Zone		4		Moculi: $\mathrm{Ev}=\mathrm{Em}{ }^{*}$	0.40
Load Duration Factor		1.33			
Shear Pier Data					
	Pier ${ }^{\text {P1 }}$	Pier $\mathrm{H}^{2}$	Pier ${ }^{\text {a }}$	Pier ${ }^{\text {P4 }}$	
Pier Height	3.00 f	3.00 f	6.00 tt	6.00 tt	
Piar Length	$4.00 \pi$	6.67 \%	4.00 ft	8.00 tt	
Wal Thickness	8 in	8 in	8 n	8 in	
' 3 ': DepthMut.	0.90	0.90	0.90	0.80	
Pier Ficity	Fox-Fix	Flu-Fic	Pin-Fix	Pin-Fix	
fm	1,500 psi	1,500 psi	1.500 psi	1,500 psi	
Fs	24,000 psi	24,000 psi	24,000 psi	24,000 psi	
Sp Insp	No	No	No	No	
Grout Spacing	32 in	32 in	32 n	32 in	
Analysis Data					
	Pier ${ }^{\text {\% }}$	Pier ${ }^{\text {H2 }}$	Prer ${ }^{\text {W }}$	Pier ${ }^{\text {H }}$	
Heightulengh	0.7500	0.4498	1.5000	0.7500	
(HL) ${ }^{\text {a }}$	0.4219	0.0910	3.3750	0.4219	
Rel Defl	0.2969	0.1600	2.0000	0.4375	
Sum Rigidiy	12,402.77				
Rigity $=.001 / \mathrm{D}$ fil	3,388.421	6,248.638	500.000	2285.714	
\%Force to Pier	0.27	0.50	0.04	0.18	
Shear to Pier	15.508 k	28.768 k	2.302 k	10.523 k	
Relative Dan* 1005	0.00 in	0.00 in	0.00 in	0.00 in	
M / (V'Deptro	0.417	0.250	1.667	0.833	
Em	1125,000.0	1125,000.0	1125,000.0	1125,000.0	psi
Er	450,000.0	450,000.0	450,000.0	450,000.0	psi
Summary					
Shear Reinforcing... $\mathrm{fv}=\mathrm{V} /\left(12^{*} \mathrm{est}^{\prime} \mathrm{J} \mathrm{d}\right)$	Pier \#1	Pier \#2	Pier \#3	Pier ${ }^{\text {H }} 4$	
	10989 ps	122.25 psi	16.31 psi	37.28 psi	
Fv: wo Reint.	30.76 psi	32.20 psi	23.28 psi	27.19 psi	
Fv. w Reirf.	46.14 psi	48.29 psi	$38.63 \mathrm{psi}$	40.78 psi	
Horiz Shear Av Req'd	fv>Fvimax	fvofvimax	Not Rea'd in 2 ft	0.062 im 2 ml	
Bending Reinforcing...					
Momert © End	$23.26 \mathrm{k}-\mathrm{Tl}$	$43.15 \mathrm{k}-\mathrm{fl}$	13.81 kft	$63.14 \mathrm{k}-\mathrm{tt}$	
"d' to tersionAs	3.00 ft	6.00 ft	3.60 ft	7.20 fl	
Bending As Redd	0.20 in 2	0.23 in 2	0.12 n 2	0.27 in 2	

### 3.6 Masonry Lintel

This program provides design analysis for concrete masonry lintels subject to vertical and lateral loads. Lintels can have fixed or pinned ends for most typical conditions, and the user can specify rebar sets within the depth of the lintel.

Vertical loads can be dead and live uniform and concentrated loads. You can have up to four loads of each type, and the uniform loads can be full or partial length.

The program provides analysis for both seismic and wind loads for each recalculation. You can specify seismic factors that apply to the lintel's weight and a wind load.

To allow the program to model different concrete block types, you can specify either lightweight or medium weight block, and additionally enter a lintel weight multiplication factor.

For both the vertical and lateral bending and shear directions, the program calculates allowable bending moments and shear stresses. Also, for both directions, actual moments and shears due to all entered loads are calculated. Final results consist of combined stress ratio calculations for all combinations or dead, live, seismic, and wind vertical and lateral moments and shears.


## Basic Usage

- Enter Allowable Stresses And Stress Increase Factors. This program allows you to enter the f'm multiplier used to calculate Em, as well as whether special inspection is used or if live loads should be included with seismic or wind loads (we call them Short Term (ST) loads). The seismic factor multiplies the lintel weight and uses the
result as the lateral load acting on the lintel (in the same direction as wind load).
- Enter Lintel Data. Clear span is the net opening width the lintel. Depth is the lintel's height, used for vertical bending resistance and weight calculations. Thickness should be entered as NOMINAL thickness. The program extracts wall weight and equivalent solid thickness from internal tables. Using the Fixity entry you can specify whether the lintel has fully fixed end or pinned ends (in both vertical and lateral directions).
- Enter Reinforcing Data. The program works on the concept that you will have pairs of rebars spaced vertically up and down the depth of the lintel. Only the top and bottom sets will be used for vertical bending capacity. Only the bars on one face from each bar set, placed at each face of the lintel, will be used to calculate lateral bending capacity. Please see the example of how the six entries are used correctly.
- Applied Loads allow you to place up to eight dead and live loads on the lintel. When entering Distributed Loads, you can specify a full length load by either leaving both X Left and X Right blank, or setting X -Right equal to the lintel span.
- Review the SUMMARY tab for overstress cases (which will be flagged as No Good). The most important values in this section are the six values listed in the upper right corner under the word combined.
- NOTE! Please be aware that the Load Duration Factor is applied to allowable values, so all stress ratios must be less than 1.0 for a satisfactory design.
- When satisfied, you can Print or Save the data for the current calculation, Reset the calcsheet, or use the Access Menu to choose another program.


## Unique Features

- This program calculates all vertical and lateral moments and shears and combines them for all possible stress ratios. This is a very thorough evaluation of combined stresses for seismic and wind design.
- Allowance is made for you to modify the material weight, selectively omit live load from seismic or wind loadings, and models both fix-fix and pin-pin end fixity conditions.


## Assumptions \& Limitations

When the lintel's fixity is set to Fixed both vertical and lateral bending are considered fixed.

## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Tab



## Clear Span

Span length of the lintel used for all bending and shear stress calculations.

## Lintel Depth

Total depth (or height) of the lintel.

## Thickness

NOMINAL thickness of the lintel.

## Fixity

This controls how moments and shears are calculated, by specifying whether the beam is fixed at each end or pinned at each end.

## Special Inspection

Enter $Y$ is special inspection will be used during the lintel's construction. A No entry here will reduce all allowable stresses by $1 / 2$.

## Seismic Factor

This value will be applied directly to the lintel weight to generate the lateral seismic load acting on the
lintel.

## Fs

Allowable steel yield strength. Typically, enter 24,000 for Grade 60 rebar, 20,000 for Grade 40.

## f'm

Basic masonry strength, psi.

## Em = $\mathbf{f}^{\text {' }}$ (entry)

This value will be multiplied by f'm to calculate Em. This value varies between code, and is typically 75 or 1,000 .

## Weight Multiplier

This multiplier can be used to further factor up or down the unit weight of the lintel. The lintel weight is retrieved from internal tables using your specification of nominal wall thickness and block type. THE LINTEL IS CONSIDERED FULLY GROUTED.

## Block Type

This entry controls what block type is being used for determining the wall weight to be recalled from the internal tables. Select Lightweight, Medium Weight, or Normal Weight.

## Duration Factor

This factor will be applied to all allowable stress values when short term seismic or wind loads are included in that combination.

## Rebar Tab



## Rebar Size

Enter the rebar size used for all longitudinal bar sets to be used in the lintel.

## \# Bars E/F@ Location

Enter the number of rebars at each face of the wall for each bar set. In the example problem, only one \#6 was used on each face for all three bar sets.

## Clearance @ Top \& Bottom

Distance from the top and bottom of the lintel respectively to the center of area of the bar set. These distances will be used as $d$ for vertical bending strength calculations.

## \# Bar Sets Vertically

Enter the number of bar sets in the lintel.

## Spacing Between Bars

This is the clear distance between the bars on each face in a bar set. IT IS ASSUMED THAT THE BARS ARE CENTERED ALONG THE LINTEL VERTICAL CENTERLINE. d used for lateral bending strength calculations is calculated as: Spacing Btwn Bars + (Actual Thickness - Spacing Btwn Bars) / 2

## Loads Tab



## Distributed Loads...



## Wind Load

Wind load applied to the projected surface of the lintel (Span * Depth).

## Point Loads \& Distance

You may use this entry to apply up to four concentrated dead and live loads to the lintel. Distance refers to the distance from the left end of the lintel to the location of the load.

## Distributed Loads

You may use this entry to apply up to four full or partial length uniform dead and live loads to the lintel.

## X Left

Distance from the left end of the lintel to the start of the load. Use $0 "$ for full length loads, or partial length loads that begin at the left support.

## X Right

Distance from the left end of the lintel to the end of the load. For full length loads, you can enter 0" or the span length here.

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results / Summary Tab

This area summarizes all the combined stresses, actual moments and shears, and allowable moments and shears. The Combined values for Moment and shear are the ratio of actual/allowable value. The Combined values in the upper right corner combine both lateral and vertical load stress ratios for shear and bending components, and these values should all be less than 1.0 " for a satisfactory design. (The Load Duration Factor" was already applied to the allowable stresses).


## Results / Moments \& Shears Tab



## Results / Design Values Tab



## Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Printing Tab

This tab allows you to control which areas of the calculation to print. Checking a box will signal that the information described by the item will be printed. However, if there is no information in for a particular selection it will not be printed. So these checkboxes are best described as "If this particular area of the calculations contains data then print it".


## Sample Printout




## 4 Retaining Wall Design Modules

All three retaining wall design programs provide a thorough and complete solution for virtually any common retaining wall. The three modules are called :

- Cantilevered Retaining Wall
- Restrained Retaining Wall
- Tapered Stem Retaining Wall

All programs have these characteristics:

- Variable Toe \& Heel dimension, footing keys
- Variable soil height over to and heel with backfill angle behind heel.
- Loading for soil, surcharge, adjacent footing, vertical on stem, and general lateral loads.
- Cantilevered wall allows you to design up to 5 stem sections of different material and design specifications.
- Tapered stem wall is concrete only and you can specify from and rear stem angles.
- Restrained wall program allows you a constant thickness stem in concrete or masonry.
- All programs do a thorough analysis of overall sliding and overturning stability, soil pressure, footing design, and stem design.


### 4.1 Cantilevered Wall

This program provides calculation procedures necessary to perform complete design and analysis of a conventional cantilevered retaining wall.

The retaining wall may be loaded with any of the following load combinations :

- Any angle of sloped backfill.
- Surcharge loading above heel or toe.
- Eccentric axial dead and live load on stem.
- Lateral and vertical load from an adjacent footing.
- Wind or seismic force on projecting portion of stem.
- An additional uniform lateral load may be applied to the wall.

The following overall dimensions can be specified:

- Retained height.
- Toe and heel dimension.
- Wall extension above retained height.
- Footing key depth, width, and location.
- Soil height over the toe.

The following stability checks are performed:

- Total overturning and resisting moment.
- Optional Inclusion of vertical active pressure on the rear face of the wall to resist overturning.
- Sliding resistance using both passive and active pressure.
- Both heel and toe of the footing are designed as follows:
- Toe Design - Find actual moment at stem face, check required minimum reinforcing, list rebar choices, and check one-way shear.
- Heel Design - Find moment at stem face, check required minimum reinforcing, list rebar choices and check one-way shear. User may neglect upward soil pressure for conservative design.

Stem Design: Up to five ascending stem sections, either masonry or concrete, may be selected. User enters whether masonry or concrete, thickness, rebar size and location, and special inspection status. Program determines maximum rebar spacing (at 8" modules for masonry), and checks shear at bottom of section

Also, the program has the unique ability to design screen walls (freestanding walls where the retained height is low and the projection above the soil is higher). Wind and seismic loads may be applied to the projecting portion, and an increased allowable stress may be used as allowed for short term loadings.

Cantilevered Retaining Wall

Tools \& Settings		3 Help	\% Print	$\square$	$\chi$ cancel		Save
	Key Reinf. Req'd Sliding $>=1.5 \mathrm{OK}$	$\text { Overturning }>=1.50$   Ftg Shear OK		3rd Stem Bending Overstress Soil Press NG!			



## Basic Usage

- Entering Soil Data specifies the lateral earth pressures applied to the wall. Active Pressure will be used on over toe and/or heel unless Slope is non-zero. If this is the case, then the soil is sloped and Slope Pressure will be used behind the wall to generate lateral loads. Maximum Pressure can be entered to instruct the program to limit the lateral pressure intensity. (The pressure diagram then becomes uniform). Passive Pressure will be used for the full depth of soil in front of the wall to resist sliding. Soil Density will be used for soil weight, and Soil Height Over Toe will be used to define passive pressure height, vertical load, and will create an active pressure resisting overturning.
- You can apply two additional vertical Loads: an Axial Load to the top of the stem (with optional eccentricity), and Toe and Heel Surcharges. If the heel surcharge is permanent, you can specify that it Should Be Used To Resist Overturning.
- In addition to the lateral loads created by the soil above the footing, you can apply additional Lateral Loads to the wall. Enter a Lateral Loads Acting on the Stem Above Soil when your wall will extend above the soil, such as a screen or guard wall. Impact and bracing loads can be applied to the wall using the Additional Lateral Load item, letting you specify a load intensity and length. You can also enter an Adjacent Footing Load, by specifying the magnitude of load and position relative to the rear of the topmost stem section.
- The Wall and Footing Data section is used to specify the retained height, stem height above soil, and footing dimensions. Zero entries are permitted for the key and either toe or heel width. While using the program, you can easily change these values often and recalculate [F9] to determine soil pressures, overturning stability, and sliding stability.
- The critical footing wall design values are given in the Summary area, where you can review calculated results and then modify the wall and footing data as required.
- The program will perform a Sliding Check when you enter Footing/Soil Friction coefficients, and can Neglect a certain height of soil, if the soil in front of the wall is non-compacted.
- By simply entering the concrete strength, steel strength, and minimum steel percentage the program will provide a full Footing Analysis and Rebar List.
- Stem Design can be performed for up to five independent sections of the wall. By specifying Wall Construction Type, Design Height, and Wall Thickness and Reinforcing, each stem section can be easily refined for an optimum design.
- The Summary of Overturning and Resisting Moment table should be reviewed if you have any questions on how the vertical and lateral loads are being applied to the wall.
- When you are satisfied with the wall, Print or Save the current worksheet, choose Reset to start another wall design, or use the Access Menu to choose another program.


## Unique Features

- Slope of backfill may be varied from flat to 45 degrees.
- Either a concrete or masonry stem can be specified. When concrete is chosen, the wall thickness, rebar size, and location is used to calculate the minimum spacing for the rebar. When masonry is specified, the option of special inspection is entered in addition to the above values, and the maximum rebar spacing is calculated at 8" modules.
- The program has the unique ability to design screen walls for conditions where the wall extends a distance above the soil which is much greater than the retained height.


## Assumptions \& Limitations

- Both active and passive pressures are applied as Equivalent Fluid Pressures.
- Friction coefficient is assumed to be applicable for both friction only and friction combined with passive pressure cases.
- Design for bending reinforcement in Toe and/or Heel of footing is calculated using d = thickness minus 3 ".
- If surcharge exists above the Toe or Heel, the soil height over those areas will be increased (internally) by the ratio of Surcharge/Soil Density.
- All concrete design is based on ACI Ultimate Strength Design.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Data Tab



## Retained Height

This is the height of retained earth measured from top of footing to the top of soil behind the stem (over the heel). When the backfill is sloped, the soil will slope away and upwards from this height. The actual retained height used for overturning and soil pressure calculations will be the retained height projected at the vertical plane of the back of the heel, but for stem moments, no such increase will be made. Using the spin-buttons you can vary this in 3 -inch increments (you can type in any number). After each entry you can press the tab key to advance to the next entry, or use your mouse to position the cursor.

## Wall Height Above Retained Soil

Use this entry to specify if the wall extends above the retained height. This entry is typically used to define a "screen wall" projection above the soil retained. This extension can be used as a weightless "Fence" or a concrete or masonry stem section without any soil retained behind it. You can enter wind load on this projection using the entry "Load @ stem above soil" on the "Loads" tab. We'll handle the fence when we get to the STEM design screen.

## Height of Soil Over Toe

Measured from the top of footing to top of soil, this may vary from a few inches to a few feet (it is measured in inches) depending upon site conditions. It is used to calculate passive soil pressure depth (considering "Ht. to Neglect" on "Sliding" tab). This soil can also be used to calculate an active pressure to reduce overturning; this is a choice on the Options Screen, and can have significant effect if the footing is well below grade.

## Water Table Height Over Footing

If you want to design for a water table condition, enter the maximum height from top of footing to water table level. The program will then compute the added pressures for saturated soil on the heel side of the footing, including buoyancy effect, to calculate increased moments and shears on the stem, and overturning. Do not enter a height greater than the retained height, nor a liquid other than water.

## Soil Slope

You may enter any backfill slope behind the wall. Use the drop-down menu or type the slope ratio as Horiz/Vert. The soil must be level or slope upward. Negative backfill slopes (grade sloping downward, away from the wall) are not allowed.

The program will use this slope to 1 ) include the weight of a triangular wedge of soil over the heel as vertical load, and 2) compute overturning based upon an assumed vertical plane at the back face of the footing extending from the bottom of the footing to ground surface - a steeper slope will result in a higher overturning moment. We suggest not using a slope steeper than 1.5 to 1.0 unless approved by the geotechnical engineer. The program will not accept a backfill slope steeper than the angle of internal friction.

## Allowable Soil Bearing

The maximum allowable soil bearing pressure for static conditions. Using the spin buttons you can increment in 50 psf steps. Usual values for this vary from 1,000 psf to 4,000 psf or more.

## Lateral Pressure Method

Here you can choose between E.F.P. or Rankine formula or Coulomb formula. EFP means "Equivalent Fluid Pressure," where you can enter a lateral soil pressure in psf per foot of depth. "Rankine" or "Coulomb" instructs Retain Pro to use the Rankine or Coulomb Method to calculate active and passive soil pressures using an entered angle of internal friction for the soil. When Rankine or Coulomb is chosen, the Ka*Density value for active pressure is computed.

## Active Soil Pressure - Heel Side (EFP Method Chosen)

Active Pressure: Ka * Gamma (Rankine or Coulomb Method Chosen)
Enter the equivalent fluid pressure (EFP), or the angle of internal friction if Rankine or Coulomb is chosen, for the soil being retained that acts to overturn and slide the wall toward the toe side. This pressure acts on the stem for stem section calculations, and on the total footing+wall+slope height for overall stability and soil pressure calculations.

Commonly used values, assuming an angle of internal friction of 34 , are 30 pcf for a level backfill; 35 pcf for a $4: 1$ slope; 38 pcf for a $3: 1$ slope; 43 pcf for a $2: 1$ slope; and 55 pcf for a $1.5: 1$ slope. These values are usually provided by the geotechnical engineer. If the Rankine or Coulomb method had been chosen, these values will be computed using those formulas.

When the retained soil is sloped, a vertical component of the lateral earth pressure over the heel can be applied vertically downward in the plane of the back of the footing. You can choose to apply this force for overturning resistance, sliding resistance, and/or for soil pressure calculations, by checking the boxes on the CRITERIA > Option screen.

## Angle of Internal Friction (Rankine or Coulomb Method Chosen)

This value is entered in degrees and is the angle of internal friction of the soil. This value is usually provided by a geotechnical engineer from soils tests, but can also be found in reference books or building codes for various typical soil classifications. This value is used along with Soil Density within the standard Rankine and Coulomb equations to determine "Ka" and "Kp" multipliers of density to give active and passive soil pressure values.

## Active Soil Pressure - Toe Side

If the EFP method is chosen, enter the active pressure to be used on the toe side of the wall. This active pressure is used along with the "Soil Height over Toe" value (entered on the Sliding tab) to calculate a stabilizing soil force on the wall. This front side of the wall is assumed to be level.

When either the Rankine or Coulomb method is chosen, the angle of internal friction is used in the

Rankine formula with an assumed level toe-side slope.
The active pressure from soil over the toe partially counteracts the heel-side active pressure for overturning calculations.

## Passive Pressure (EFP Method Chosen)

## Passive Pressure: Kp * Gamma (Rankine or Coulomb Method Chosen)

This is the resistance of the soil in front of the wall to being pushed against to resist sliding. Its value is in psf per foot of depth (pcf). For the E.F.P. method, you input this value, which is usually obtained from the geotechnical engineer. If the Rankine or Coulomb method is chosen, it will be computed and entered for you. Its value usually varies from 100 pcf to about 350 pcf.

## Soil Density

Enter the soil density for all earth above the toe and heel of the footing. This weight is used to calculate overturning resistance forces and soil pressures using the weight of the soil block over the projecting toe and heel of the footing. When surcharges are applied over the soil, the surcharges are transformed to equivalent uniform lateral loads acting on the wall by the ratio force = (Surcharge/ Density)*Lateral Load. Input this value in lbs. per cubic foot. Usual values are 110 pcf to 120 pcf.

## Material Data Tab

This screen allows you to change properties of masonry and concrete. It also allows you to decide what load factor (1.4 or 1.7) to use for factored soil pressure attributable to dead loads.


For Masonry

## Concrete Block Type

This allows you to select Lightweight, Medium weight, or Normal weight concrete masonry units.

## Factor Applied to $\mathbf{f}_{\mathrm{m}}^{\prime}$ for Calculation of Em

The modulus of elasticity for masonry is $750{ }^{f_{m}}$ (UBC '97 2106.12.1). This entry allows you to select a multiplier other than 750.

## Multiplier Applied to Wall Weight from Tables

This entry allows you to increase or decrease the internal default values of stem weights, as displayed on the STEM screen.

## For Concrete

## Stem concrete weight

This is usually 145-150 pcf, but may be changed with this entry.

## Footing concrete weight

This option is necessary since if there is any buoyancy effect, this will reduce the effective weight of the footing concrete.

## ACI Factored Soil Pressure

This gives you two choices for computing the factored moment in the toe. Select either a 1.7 load factor for both dead load and pressure attributable to live load and lateral soil pressure on the wall. Alternatively, and less conservative, use a load factor of 1.4 for dead load (footing and superimposed earth) and 1.7 for live load and upward soil pressure attributable to lateral soil pressure.

## Options Tab

This screen is critical to your design, since many subsequent calculation results will be affected. Review and check these boxes carefully.


## Slab is Present to Resist all Sliding Forces

Check this box when a slab is in front of the wall to resist lateral sliding. This negates sliding concerns (but check the slab if necessary). For restrained wall footings, it deletes the lateral force (base stem reaction) applied to the top of the footing, puts "not applicable" in the sliding ratio display, and dims the sliding entries on the FOOTING > KEY DIMENSIONS AND SLIDING sub-tab screen. The slab restraint is assumed to be at the top of the footing and the program does not allow it to be placed higher-if this condition occurs, append your printout with hand-calcs,

## Use Toe Surcharge to Resist Sliding and Overturning

Checking this box will include the weight of soil overburden on the toe to resist overturning and add to its weight for frictional resistance.

## Use Heel Surcharge to Resist Sliding and Overturning

Checking this box will include heel surcharge. If surcharge is live load and its use would be non-conservative, don't check this box.

## Neglect Upward Pressure at Heel

For heel calculations you may choose to neglect the upward soil pressure, typically resulting in greater heel moment. If this box is checked the Mu for upward loads will be zero.

## Toe Active Pressure Used

Checking this box will apply the toe side active pressure to reduce overturning moment and reduce sliding force to a net sliding force to be resisted.

## Choices for Use of Vertical Component of Active Pressure

The vertical component of the lateral pressure is applied at a vertical plane at the back of the footing.

You can optionally use this to resist overturning, sliding, or for soil pressure calculations. (For the latter it can make a considerable difference). Checking these boxes applies the options. For a level backfill, this option will back-solve the EFP method to find the equivalent internal friction angle, then apply this vertical component equal to tan. If either the Rankine or Coulomb method had been chosen, this
vertical component would be tangent of $1 / 2$.
Note that most texts suggest using the vertical component only to resist overturning. For a level backfill these options are usually not used.

## Loads / Vertical Loads Tab

Additional loads on the wall are entered on these sub-tabs.


## Surcharge Over Toe

If other loads are imposed directly above the toe (such as a slab, storage, or moving load), these may be entered here (you have already entered the height of the soil over toe). This surcharge is divided by soil density and multiplied by active pressure to calculate an equivalent lateral load. This surcharge is used to calculate soil pressure. You can use this surcharge to resist sliding and overturning by clicking the box on the CRITERIA > Options sub-tab.

## Surcharge Over Heel

This surcharge is considered uniformly applied to the top surface of the retained soil (over the heel). It may be entered whether or not the ground surface is sloped, but is always taken as a vertical force. This surcharge is divided by the soil density and multiplied by the Active Pressure to create a uniform
lateral load applied to the wall. You can use this surcharge to resist sliding and overturning by clicking the box on the CRITERIA > Options sub-tab.

## Axial Loads Applied to Top of Stem

These loads are considered uniform load along the length of the wall. They are applied to the top of the topmost stem section and effect the design of masonry stems only. The dead and live loads are used to calculate stem design values and factored soil reaction pressures used for footing design. Only the dead load is used to resist overturning and sliding of the retaining wall.

## Axial Load Eccentricity

This is the eccentricity of the axial load with respect to the centerline of the uppermost stem section. The eccentricity moves the load toward the toe, causing bending moments that are additive to those caused by the lateral soil pressure over the heel (negative eccentricities are not accepted).

## Adjacent Footing Load

This entry gives you the option of placing a footing adjacent and parallel to the back face of the wall, and have its effect on the wall included in both the vertical and horizontal forces on the wall and footing. Refer to the General Reference Diagram for locations where input measurements should be taken.

For a "Line Load" the load entered is the total load per foot parallel to the wall (not lbs. per sq. ft ).
If the adjacent footing is specified as "Square Footing" (not line load), the load entered should be the adjacent footing load divided by its dimension parallel to the wall, giving a pounds per lineal foot value, as for a continuous (line) footing.

A Boussinesq analysis is used to calculate the vertical and lateral pressures acting on the stem and footing. The program uses an assumed Poisson ratio of 0.3. (See Foundation Analysis and Design, 5th Edition, by J. E. Bowles, McGraw-Hill, pages 629-639)

Use of the Adjacent Footing may not be applicable if the horizontal distance from back face to stem to closest edge of adjacent footing is greater than the distance from top of wall footing to bottom of Adjacent Footing (i.e. outside an assumed line of influence).

When the Boussinesq analysis is used, the program may require additional computing time, depending upon the speed of your computer. To avoid this delay (which occurs any time any entry is changed) we suggest you use a vertical load of zero until your data entry is nearly finalized. Then enter the actual footing load and modify your final values.

Suggestion: For adjacent truck or highway loading, it may be preferable to use a heel surcharge (uniform) of 250 psf (or more) instead of treating it as an "adjacent footing."

Do not use this feature if the adjacent footing load is farther from the stem than the retained height, less the depth of the adjacent footing below the retained height, since at this distance it will not have significant effect on the wall.

## Footing Width

Width of the adjacent footing measured perpendicular to the wall. This is necessary to create a one-foot long by Width wide area over which the load is applied.

## Footing Eccentricity

This entry is provided in case the soil pressure under the adjacent footing is not uniform. Enter the eccentricity of the resultant force under the adjacent footing from the centerline of the footing. Positive eccentricity is toward the toe, resulting in greater pressure at the side of the adjacent footing closest to the stem. The program will use the vertical load and eccentricity and create a trapezoidal pressure distribution under the adjacent footing for use with the Boussinesq analysis of vertical and lateral pressures.

## Wall to Footing Centerline Distance

Distance from the center of the adjacent footing to the back face of the stem at the retained height.

## Footing Type

This drop down menu selection allows you to enter either an isolated footing using the "Square Footing" selection, or a continuous footing using the "Line Load" selection.

## Base Above/Below Soil at Back of Wall

Use this entry to locate the bottom of the footing with respect to the Retained Height. Entering a negative number places the footing below the soil. A positive entry would typically only be used when the soil is sloped and the footing resides "uphill". To insert a negative number, first type the number then press the "-" (minus) sign.

Note: If the "Adjacent Footing" is another retaining wall at a higher elevation, the Boussinesq analysis may be used for the vertical load applied to the soil from the wall, however the design must also consider the lateral (sliding) loads from that adjacent wall. This load could be applied as "Added Lateral Load", however this is at the discretion of the designer and is not within the scope of the program. Caution is urged for this condition. See discussion in the companion book: Basics of Retaining Wall Design.

## Loads / Lateral Loads Tab



## Load @ Stem Above Soil

This load (typically a wind load) will be applied to that part of the stem projecting above the retained height defined by the entry "Wall height above retained soil." It is used to calculate overturning moment and shear, stem design moment and shear, and soil pressures. Customary values are 10 psf or higher. Only a positive "+" value can be entered (i.e., the force may only be applied in a direction to add overturning, in the direction of the active soil pressure).

## Added Lateral Load

This input allows you to specify an additional uniformly distributed lateral load applied to the stem. You can use it to apply a seismic load to the wall, an additional uniform lateral load due to soil pressure, or apply a short but intense load due to impact of a car or similar force (this case can be modeled by separating the "Height to Bottom" and "Height to Top" by just one foot, and using an "Added Lateral Load" equal to the total added force). This load is factored by 1.7 to calculate concrete moments and shears.

## Height to Top

This dimension defines the upper limit of the added lateral load measured from the top of the footing. Do not enter a dimension higher than the top of the wall ("retained height" plus "Wall height above retained soil").

## Height to Bottom

This dimension defines the beginning (or bottom) of the added lateral load measured from the top of the footing.

## Stem Tab

The layout of this screen will change depending upon whether you previously chose a conventional cantilevered wall, a tapered stem wall (earth side battered), or a gravity wall. This screen is for a straight stem non-battered wall.


## Material

Use the drop down menu to select Masonry, Concrete, Fence, or None. Fence is only allowed on top of the wall, higher than the Retained Height, and is considered weightless. Use None to disable the stem section.

## Thickness

Use the drop down menu to input the wall thickness. If masonry is chosen, you will be given standard masonry thickness (e.g. 6", 8", 12"). If concrete is chosen, you can increment in one-inch steps. If Fence had been chosen, this entry is unavailable since the fence is assumed to be weightless.

## Wall Weight

This displayed value is based upon the wall data entered earlier. The industry standard values used by the program may be modified on the CRITERIA > Materials Screen. See Appendix C for masonry wall weights.

## Rebar Size

Make your selection from the pull-down menu for bar sizes \#3 to \#10.

## Rebar Position

Chose between Center and Edge. If Center is chosen, the rebar d distance will be $1 / 2$ the actual wall thickness. If Edge is chosen it will be located at the heel side of the stem.

For masonry design, the program contains a table of the appropriate " d " values to use for various block sizes and center/edge locations

For concrete, the "edge" rebar depth is always stem thickness less 1.5 " for \#5 and smaller bars (or 2" for \#6 or larger), less one-half the bar diameter. You can modify the rebar depths by using the CRITERIA > Material screen.

## Specify Position Box

Clicking this box displays the default " $d$ " value, which may change. If unchecked, the default " $d$ " is displayed.
$f_{m}^{\prime}$
Enter $f_{m}^{\prime}$ for masonry stems to be designed. This value is not visible when a concrete wall has been specified. Spin button changes this value in 250 psi increments.

Fs
Enter the allowable steel stress, based on working stress design, which should be used for design of the masonry stem section. Spin button changes this value in 1,000 psi increments. This value is not visible when a concrete wall has been specified.

## Short Term

This is used for masonry design only, and indicates the allowable overstress multiplier ( 1.33 for wind and seismic, per ACI and UBC). We recommend using a value greater than one only if resulting stresses from wind or seismic are greater than those from static forces acting alone. You select from the pull-down menu.

## Special Inspection

This is applicable to masonry stems only, and if checked, the full allowable $f_{m}^{\prime}$ used in flexure, shear, and axial stress will be used. If not checked, the allowable values will be reduced by one-half. The Uniform Building Code requires this reduction if Special Inspection is not provided.

## Solid Grout

This applies to masonry only, and if this box is checked the weight of the wall will be based upon industry standard solid-grout weight for either lightweight, medium weight, or normal weight. If this box is not checked, the program will calculate the weight based upon grouting of only cells containing reinforcing.
This also affects equivalent solid thickness for stem shear calculations, and area for axial stress calculations (combined with moment for masonry stems).

## Modular Ratio "n"

This is the multiplier used on ${ }^{\prime} m$ to calculate the modulus of elasticity of masonry. The 1997 UBC specifies $E m=750 * f_{m}^{\prime}$, which is the default value in the program. ACI 530-02, Table 5.5.1.3, lists higher values, which result in lower " $n$ " values, hence the allowance for the user to modify it by using the CRITERIA > Material screen.

## Equivalent Solid Thickness

If partially grouted (not solid grout) this value is generated from an internal database as shown below:

Thickness (inches)	48'	Grout Spacing			
		8"	16"	24"	32"
40"					
6		5.6	4.5	4.1	3.9
3.8	3.7				
8		7.6	5.8	5.2	4.9
4.7	4.6				
10		9.6	7.2	6.3	5.9
5.7	5.5				
12		11.6	8.5	7.5	7.0
6.7	6.5				
14		13.6	9.9	8.7	8.1
7.6	7.4				
16		15.6	11.6	10.1	9.5
8.6	8.3				

## Stem Design Heights

IMPORTANT! The term "Design Height" used in this program is the height above the top of the footing (i.e. base of stem) where you want to check the design. It calculates moments and shears applied above that point.

You can divide the stem into up to five sections (increments of height). Each increment represents either a different material (concrete, masonry, or fence), thickness, or a change in reinforcing size or spacing.

For most walls, only two or three changes in stem sections are used, for example, at the top of the dowels projecting into the stem from the footing and perhaps further up the wall where a more economical section is desired.

## Bottom

You must start your stem design here, at the base (height above footing $=0.00$ ), where the stem moment and shear is maximum. As you manipulate the bar sizes, spacing, and position (you first, of course, will have selected a wall material and trial thickness) until the Summary box shows you an acceptable stress ratio (the higher and closer to 1.0, the more efficient).

To check the wall at a higher Design Height, such as at least the LAP REQ'D IF ABOVE distance, where reinforcing or thickness can be reduced, click the Insert Stem button and enter the next higher section. Advance the spin button to the desired height above the top of the footing or enter it by typing. This will move (and dim) the Bottom Section and you can now design this "2nd" section.

Continue this way, clicking Insert Stem after each stem section design is completed, up to a maximum of five heights. A new Design Height should only be entered when you want to change the material, thickness, or reinforcing, and should never be less than about two foot intervals.

## Summary -- Overall Stress Ratio

For masonry, this is the computed ratio of $\mathrm{fa} / \mathrm{Fa}+$ Mactual/Mallowable. For concrete it is Mactual/Mallowable.

The weight of the stem will be included only if there is added axial load. For masonry stems, Fa is calculated by considering the wall as unsupported with "K" = 2.0. Since even a very small axial load will activate the unsupported height/slenderness calculation for masonry stems, we suggest you do not enter an axial load unless it is significant (e.g. greater than, say, 500 plf.).

## Actual Moment

This is the maximum moment due to the lateral pressures and applied loads above the "Design Height" location entered. Note that when concrete is used, all soil pressures and loads are factored per default Load Factors for evaluation of moments and shears.

## Allowable Moment

This is the allowable moment capacity, using working stress for masonry and ultimate strength for concrete. For masonry, both steel and masonry stresses are checked (and half stresses used for no Special Inspection). For concrete strength design, and steel percentage is limited to $0.75^{*}$ rho balanced.

## Total Force

This is the total lateral force from loads applied above the "Check Design at Height" location entered. Note that when concrete is used, all soil pressures and loads are factored.

## Actual Shear

For masonry, the effective thickness based on the actual "d" distance for the moment applied is used, considering partial or full grouting, to determine the unit shear produced by the total lateral force of the stem cross section (equivalent solid thickness is not used). Half stresses are used for no special inspection. Shears are calculated at the "Design height" location entered, not at distance "d" above design height. Concrete stems use a distance "d" x 12" for the shear area, and masonry stems use "jd" $\times 12^{\prime \prime}$ (with proper calculations for partial grouted cells) as the shear area.

## Allowable Shear

For masonry, this equals ( ( $_{\mathrm{m}}^{\prime}$ * short term increase) $)^{*} 1 / 2$ with a maximum of 50 psi. For concrete, this equals $0.85 * 2 * f_{c}^{\prime} \frac{12}{2}$.

## Lap Required If Above / Below [Note: This has been changed from Version 5]

This displays the required lap length if a splice occurs above (or below) the Design Height. They are not cumulative, either make the lap above or below the Design Height for the minimum distance displayed.

The laps required above and below may be different if you are changing from concrete to masonry, or bar size. Suggest read commentary on page 93.

For concrete stems, a Class B lap splice is assumed (see ACI 318-02, 12.15), therefore the lap length is the bar development length $\times 1.3$. No reduction for stress level is permitted for lap splice lengths. Concrete is assumed to be normal weight, and bars not epoxy coated.

For masonry stems, the development length is set at 48 bar diameter, for $\mathrm{Fs}=24,000$ psi and 40 diameters for $\mathrm{Fs}=20,000 \mathrm{psi}$. No reduction is made for stress level.

Bond stress is not calculated for concrete, since it is incorporated into the development length formula. For masonry, the program internally calculates it based upon the formula $=\mathrm{M} /(\mathrm{jddb})$. It then compares this with the lap length and displays which is critical. Allowable bond stress is 100 psi without special inspection and 200 psi with special inspection, but bond will rarely be critical for masonry.

## Bar Embedment into Footing

For the bottom Design Height only (Ht. $=0.00$ ), this displays the required hook bar embedment into the footing. It assumes a bar with a 90 bend and at lest a 12 diameter extension. This embedment must be at least 6 " or 8 bar diameters.

The minimum footing thickness required is based upon this embedment depth plus the clearance you have specified below the bar (usually 3 inches). If this totals less than the footing thickness you have chosen, a warning message will be displayed.

Note that if the bar extends straight down into a key, it must go the development length, and is not reduced by level of stress. For this condition, refer to the table in Appendix B, and multiply by the displayed Stress Level to get the required embedment.

The program does not reduce embedment length by stress level unless the Reduce Hook Bar Embedment for Stress Level box is checked. This is a code arguable issue.

## Footing Tab / Footing Dimensions

This is the screen where you design the footing, by manipulating the heel and toe widths so the actual soil pressure is less than allowable, or you can use the Automatic Footing Design button (described below) to size the footing. This screen also gives you choices for toe and heel reinforcing, or indicates if it is theoretically not required. It also suggests key reinforcing, if applicable.


## Toe Width

This is the width of the Toe of the footing, and is measured from the front edge of the footing to the front face of the stem. Can be set to 0.00 for a property line condition. All overturning and resisting moments are taken about the bottom-front edge of the toe.

## Heel Width

Distance from front face of stem to back of heel projection. If a dimension is entered that is less than the stem width at the base, the program will automatically reset the heel dimension to at least the
stem width. For a property line at the rear face of the stem, this dimension would be the stem width.

## Total Footing Width

The calculated width of the footing, Toe Width + Heel Width.

## Footing Thickness

Total footing thickness, NOT including the key depth (if used). For bending and shear design of the footing, the rebar depth "d" is taken as Footing Depth - Rebar Cover - $1 / 2$ " (to account for the rebar radius). If footing thickness is inadequate for shear capacity a red warning indicator will appear.

The footing thickness must be greater than the rebar embedment length required for the bottom stem reinforcing + rebar cover. If you enter a dimension less than required for stem bar embedment, a red message will appear at the top of the screen. The program adds the calculated hooked bar embedment from the STEM screen and adds it to the rebar cover you have chosen for the bottom of the footing (usually 3 "). This will trigger the red warning. If inadequate thickness, increase the thickness, or change the stem dowels, until this message disappears.

## Center Stem on Footing

Clicking this bar will adjust the toe and heel widths you have entered so stem is centered on the footing but overall width remains the same.
$f_{\mathrm{c}}^{\prime}$
Enter concrete compressive stress for footing.
Fy
Allowable rebar yields stress to be used for design of footing bending reinforcement.

## Rebar Cover in Heel/Toe

Distance from the face of concrete to edge of rebar. The program will add $1 / 2$ " to this value and subtract the result from the footing thickness to determine the bending "d" distance.

## Minimum As Rebar Ratio

Enter the absolute minimum steel percentage to be used to calculate rebar spacing requirements ( 0.0018 Ag for $\mathrm{Fy}=60,000 \mathrm{psi}$ ). If the $\%$ steel required by stress analysis is less that 200/Fy, the minimum of (200/Fy -or- 1.333 * bending percentage required) is calculated and compared with the Minimum As\% entered here, and the greater of the two used to calculate rebar spacing requirements.

## Rebar at Stem Base

This is a reminder of the size and spacing of the bottom stem reinforcing, to make it easier for you to select toe reinforcing to match (toe reinforcing is usually the bottom stem dowel bars bent toward the toe).

## Toe Reinforcing Options

This list gives you choices for reinforcing sizes and spacing for the bottom toe bars. Typically the toe bars are extensions of the stem dowels, which are bent out toward the toe. Therefore, you will probably want only to verify that the stem dowel bar size and spacing do not exceed the selections offered.

## Heel Reinforcing Options

This list gives you choices for acceptable sizes and spacing of top heel bars. It is desirable to select a spacing that is modular with the stem dowel bars for ease of construction. Note: The program does not calculate the heel bar development length inward from the back face of the stem (where the moment is maximum). You can refer to Appendix B for development lengths in concrete, which can be adjusted for the stress level in the heel bars. When detailing footing reinforcing it is important to consider and specify development lengths for both toe and heel bars.

## Rebar Selections

Use these three entries to pick your toe, heel, and if applicable, key reinforcing. The "Max @" message
tells you the maximum spacing allowed for the bar selected.

## [Footing Width Automatic Design]

Clicking this button will cause the program to iterate footing widths until the soil pressure, overturning stability, and sliding stability ratios are acceptable. You can select either a fixed toe or heel distance, or balance the toe and heel dimensions. You can also select whether the resultant must be within the middle third of the footing. After clicking "Design," the widths required will be displayed.

Automatic footing design is not available for Restrained Walls.

## Footing Tab / Key Dimensions and Sliding

This screen tells you whether passive soil resistance plus friction resistance is adequate to resist sliding with at least a 1.5 safety factor. If inadequate, you can design a key. If a key is used, the previous footing screen will check whether reinforcing is required by first checking the plain concrete flexural capacity (for computing section modulus, 3 " is deducted from the key width per UBC '97). If the key depth to width ratio is less than about $2: 1$, it's usually adequate.


## Key Depth

Depth of the key below the bottom of footing. The bottom of the key is used as the lower horizontal plane for determining the size of the passive pressure block from the soil in front of the footing. Adjust this depth so the sliding safety factor is acceptable, but not less than 1.5. A depth greater than three feet or one-half the footing width is not recommended.

## Key Width

Width of the key, measured along the same direction as the footing width. This is usually 12 " -14 ", but generally not less than one-half the key depth so flexural stress in the key is adequate.

## Key Location

Enter the distance from the front edge of the toe to the beginning of the key. Do not enter a distance greater than the footing width minus key width.

## Align with Stem

Click this button to set front edge of key aligned with front of stem. If the key is then made the same width as the stem, the stem bars could extend down into the key to achieve development.

## Soil Over Toe to Neglect for Sliding Resistance

Since the soil over the toe of the footing is usually loose and uncompacted, it may have little or no passive resistance. This entry gives you the option of neglecting any or all of the Height of Soil Over Toe that you had entered in the CRITERIA screen. You can neglect the soil over toe plus the footing thickness, if desired.

## Footing/Soil Friction Factor

Enter this friction factor here, which is generally provided by the geotechnical engineer. It usually varies from 0.25 to 0.45 .

## \% Passive Usable for Sliding Resistance

This may be a stated restriction in the geotechnical report. Enter a value from zero to $100 \%$.

## \% Friction Usable for Sliding Resistance

This may be a stated restriction in the geotechnical report. Enter a value from zero to $100 \%$.

## Lateral Pressure @ Base of Footing

This is the total lateral force against the stem and footing which causes the wall to slide and which must be resisted. It is the total active pressure on the heel side less the active pressure on the toe side. The latter will be excluded if you choose to delete it on the OPTIONS screen.

## Less Passive Pressure Force

This uses the allowable passive pressure in pcf and the available depth (soil above toe less height to neglect plus footing thickness) to compute the total passive resistance, again multiplied by the percent usable you selected. Weight due to toe surcharge, if applicable, will also be added. If a key is used, the available passive pressure depth will be to the bottom of the key.

## Less Friction Force

This is the total vertical reaction multiplied by the friction factor, again multiplied by the percent usable you selected.

## Added Resisting Force Required

If this is 0.0 lbs ., the forces balance, but there may be no safety factor. Watch the Sliding Factor of Safety for an adequate value (usually 1.5). Add a key as required.

## Added Resisting Force Required for 1.5:1 Safety Factor

This is the additional force required to be resisted by a key to achieve a 1.5 safety factor. If zero, no key is required.

## Key Reinforcing

If flexural tension is insufficient to resist bending in key, a message will appear indicating reinforcing required. You can vary the width of the key until the message disappears. Or you can manually calculate reinforcing required.

## Sliding Factor of Safety

This gives you the ratio of passive and friction resistance to the total lateral force. This should be at
least 1.5.
NOTE : If lateral restraint is provided by an abutting floor slab (by checking the box on the CRITERIA > OPTIONS screen), the sliding factor of safety displays will be deleted, but the "Lateral Force @ Base of Footing" will be displayed for checking restraint adequacy of the slab.

## Results Tab - Resisting Moments

This screen presents in tabular form each component contributing to resisting moment, giving weights and lever arms from the front edge of the toe to the centroid of the weight.


Resisting/Overturning ratio is displayed.
For calculating the vertical component, if checked on the OPTIONS screen, and if the EFP method was chosen, the program will back-solve using the Rankine formula to obtain an equivalent internal friction angle.

The force and moment displayed at the bottom accounts for deduction of effect of vertical component, if box on CRITERIA > OPTIONS box has been checked.

## Results Tab / Overturning Moments

This screen presents in tabular form each component acting horizontally to overturn the wall/footing system. The centroid of each force is multiplied by its distance up from the bottom of the footing. The Heel Active Pressure includes the effect of surcharges and water table, if applicable, and its Distance is to the centroid of the total lateral force.


The total overturning moment is displayed, and the Resisting/Overturning ratio. The overturning moment is reduced by the toe side active pressure, if this option is selected on the Options screen.

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results Tab

Results Construction \| Wall Loading	
Soil Loading Results (Service loads)	
Soil Pressure @Toe	1,989.1 psf
Soil Pressure @ Heel	340.5 psf
Allowable	2,000.0 psf
Total Bearing Load	$7,862.6 \mathrm{lbs}$
...resultant ecc.	9.55 in
Eccentricity within middle third	
Footing Results	
ACI Factored Pressure @ Toe ACII Factored Pressure $@$ Heel	2,854.2 psf
ACI Factored Pressure @ Heel	488.6 psf
Mu:Design @Toe	12,222.1 f-\#
Mu:Design @ Heel	3,474.3 ft-\#
Heel moment OK using M < S*Fr   Stem Base Moment Governs TOE Moment	
One-Way Footing Shears...	
Shear@Toe	36.585 psi
Shear @Heel	25.239 psi
Allow. Footing Shear	93.113 psi
Stability Ratios	
OTM Ratio	$2.475: 1.00$
Sliding Ratio	1.777:1.00

## Soil Pressure @ Toe and Heel

This is the resulting unfactored soil pressure for both the toe and heel. If the eccentricity is outside the middle third, the heel pressure will show 0.00 . (Note: when the resultant is outside the middle-third, the program calculates the toe pressure assuming no "tension" at heel).

## Allowable Soil Pressure

This is for your reference as input on the Criteria input Screen

## Total Bearing Load

This is the sum of all vertical forces.

## Resultant Eccentricity

Distance from center of footing to resultant soil pressure.

## Eccentricity Within/Outside Middle Third

The resultant is outside the middle third of the footing width if the eccentricity is greater than one-sixth the footing width. (If outside the middle third, the program computes the toe soil pressure assuming no "tension" at heel.)

## ACI Factored Soil Pressure @ Toe and Heel

ACI or AASHTO load factors are applied to all dead and live loads to determine total vertical load for soil pressure used in calculating footing moments and shears. This load is then applied at the same eccentricity calculated for service load soil pressures to yield the actual factored soil pressures for footing design using ultimate strength design principles. Note that since only factored vertical loads are applied at the non-factored resultant eccentricity, a true 1.7 load factor applied to lateral earth pressure is not used for footing design. If resultant vertical load eccentricity were to be calculated
using factored loads, the distance would not truly represent a correct state of stress in the soil. ACI load factors are intended to give conservative results for stress. Calculation of a factored load eccentricity would give soil pressure diagrams that would not always represent the actual soil pressure distribution under the footing, and yield unreasonable results. Factored lateral earth pressure, however, is always used for concrete stem design.

## Mu Design @ Toe/Heel

These are the factored (by 1.4) moments at face of stem for toe and heel moments. Since neither can be greater than the stem base moment (factored if concrete stem), the latter may govern. These moments will be reduced if you choose to neglect the upward soil pressure on the Criteria > Options tab.

A message will indicate which controls.

## Shear @ Toe and Heel

The actual shear is calculated from the one-way action in the footing at a distance "d" (footing thickness - rebar cover) from the toe side of the bottom stem section, and at the face of the stem on the heel side. If "d" is greater than the projecting toe or heel length, then the one-way shear is zero.

## Allowable Footing Shear

The allowable unit shear equals $\left(0.85 * 2 * f_{\mathrm{c} 1 / 2}^{\prime}\right)$.

## Construction Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Wall Loading DiagramTab

This tab provides a sketch of the wall and it's applied loads. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Sample Printout

ENERCALC Engineering Software
P.O.Box 188

Corona del Mar, CA 92660
Voice: 949-645-0151
www.enercalc.com

Titte: ENERCALC Example Problens Job \# 97-000001 Dsgnr: MDB Date: 7:16PM. 28 OCT 03
Description : Collection of exampla problems
Scope: All programs in the Structural Engineering Library Code Rof. ACl $318.02,1997$ UBC, 2003 IBC, 2003 NFPA 5000

Pekr: Kive

Description
Complex wall, w/ adjacent ftg, axial load, surcharge, etc.

Criteria		
Retained Height	8.00 ft	
Wal helght above soil	$=$	3.00 ft
Slope Behind Wall	$=$	$200: 1$
Height of Soil quer Toe	$=$	1200 in
Soil Density	$=$	110.00 pcf
Wind on Stem	$=$	15.0 pst


Surcharge Loads	
surcharge over Hee Used To Resist Slidng Surcharge Over Toe Used for Siding \& Ov	$\begin{aligned} & =100.0 \mathrm{ps} \\ & 8 \text { Overturning } \\ & =100.0 \mathrm{psf} \\ & =1 \end{aligned}$
Axial Load Applied to Stem	
Axial Dead Load   Axial Li/e Load   Axial Load Eccentricity	$\begin{aligned} & =1,000.0 \mathrm{lbs} \\ & =1,000.0 \mathrm{lbs} \\ & =\quad 6.0 \mathrm{in} \end{aligned}$
Design Summ ary	
Total Bearing Load resultant ecc.	$\begin{aligned} & =7,767 \mathrm{bs} \\ & =10.54 \mathrm{n} \end{aligned}$
Soll Pressure @Toe Soll Pressure © Heel Allomable Soil Pressure Exc	$\begin{aligned} & =\quad 2,164 \text { pst NG } \\ & =\quad 226 \mathrm{pst} \text { OK } \\ & =\quad 2,000 \mathrm{pst} \\ & =\quad \text { eedsAllowable! } \end{aligned}$
ACl Factored @Toe ACI Factored © Hed	$\begin{aligned} & =\quad 3,106 \mathrm{psf} \\ & =\quad 325 \mathrm{pst} \end{aligned}$
Focting Shear $@$ Toe Footing Shear © Hes Allorable	$\begin{aligned} & =\quad 36.9 \mathrm{psi} \text { OK } \\ & =\quad 25.2 \mathrm{psioK} \\ & =\quad 93.1 \mathrm{psi} \end{aligned}$
Wall Stability Ratios Overturring Siding	2.340 OK 1.77

Sliding Calcs (Vertical Component NOT Used)
Lateral Sliding Force $=2,872.5 \mathrm{lbs}$
less $100 \%$ Passive Force $=\quad 3,202.0 \mathrm{los}$
less $100 \%$ Friction $F$ orce $=-2,030.2 \mathrm{los}$
Added Force Req'd $=0.0 \mathrm{bs}$ OK
0.0 bs OK

| Footing Design Results |
| :--- | :--- | :--- | :--- |


Soil Data	
Allow Soll Bearing	= 2,000.0 psf
Equvalent Filid Pressure	Method
Heel Active Pressure	$=450$
Toe Adtre Pressure	$=35.0$
Passive Pressure	250.0
Water height over heed	0.0 t
Footingl\|Soil Friction	$=0.300$
Soll height to ignore for passwe pressure	$=1200 \mathrm{in}$


Lateral Load Applied to Stem	
Lateral Load	$=250 \mathrm{fitt}$
Hegrt to Top	$=5.00 \mathrm{f}$
$\ldots$ Height to Bottom	$=2.00 \mathrm{ft}$


Stem C onstruction		Top Stern	2nd	3 rd
Design height	$\mathrm{f}=$	Ratio $>1.0$ 6.33	$\begin{gathered} \hline \text { Sem OK } \\ 3.00 \end{gathered}$	$\begin{array}{r} \operatorname{Sem} \text { OK } \\ 0.00 \end{array}$
Wal Material Above "H"	$=$	Masonry	Masonry	Concrete
Thickness	$=$	8.00	12.00	1200
Rebar Sre	=	\# 5	\# 7	\# 7
Rebar Spacing	$=$	40.00	16.00	16.00
Rebar Placed at	=	Center	Edge	Edge
Design Data fb/FB + fara	$=$	9.678	0.522	0.662
Total Force © Section	$\mathrm{lbs}=$	175.7	954.8	$3,338.2$
Moment. . Actual	fl-s=	1,234.1	2.910 .1	12,222.1
Moment....Allowable	$\mathrm{ft}-\mathrm{t}=$	129.9	6.477 .9	18,468.0
Shear.....Actual	$\mathrm{psi}=$	4.9	10.0	29.1
Shear.....Allowable	$\mathrm{psi}=$	34.7	38.7	93.1
Bar Develop ABOVE Ht.	in=	12.83	42.00	37.38
Bar LaphHook BELOW H-	in=	25.00	37.38	873
Wal Weight	pst $=$	75.0	118.0	145.0
Rebar Depth 'd	in=	3.81	9.00	9.56
Masonry Data				
fm	$\mathrm{psi}=$	105	1,500	
Fs	$\mathrm{psi}=$	1,687	24,000	
Sold Grouting	$=$	Yes	Yes	
Special Inspection	$=$	Yes	Yes	
Modular Ratio ' n '	$=$	366.64	25.78	
Short Term Factor	=	3.378	1.000	
Equiv. Solid Thick.	in=	7.60	11.62	
Masonry Block Type $=$ Lig	ghtweig			
Concrete Data psi $=$   ff $3,000.0$    Fy psi $=$				

Other Acoeetable Sizes \& Spasings

Heel: Not readd. Mu < S = Fi
Key: $\# 4$ @ $16.00 \mathrm{in}, * 5 \mathrm{@} 24.75 \mathrm{in}$, \#6@ 35.


### 4.2 Restrained Wall

This program provides calculation procedures necessary to perform complete design and analysis of a propped-cantilevered retaining wall.

The retaining wall may be loaded with any of the following load combinations :

- Any angle of sloped backfill.
- Surcharge loading above heel or toe.
- Eccentric axial dead and live load on stem.
- Lateral and vertical load from an adjacent footing.
- Wind or seismic force on projecting portion of stem.
- An additional uniform lateral load may be applied to the wall.

The following overall dimensions can be specified:

- Retained height and top support height
- Toe and heel dimension.
- Wall extension above retained height.
- Footing key depth, width, and location.
- Soil height over the toe.

The following stability checks are performed:

- Total overturning and resisting moment.
- Optional Inclusion of vertical active pressure on the rear face of the wall to resist overturning.
- Sliding resistance using both passive and active pressure.
- Both heel and toe of the footing are designed as follows:
- Toe Design - Find actual moment at stem face, check required minimum reinforcing, list rebar choices, and check one-way shear.
- Heel Design - Find moment at stem face, check required minimum reinforcing, list rebar choices and check one-way shear. User may neglect upward soil pressure for conservative design.



## Basic Usage

- Entering Soil Data specifies the lateral earth pressures applied to the wall. Active Pressure will be used on over toe and/or heel unless Slope is non-zero. If this is the case, then the soil is sloped and Slope Pressure will be used behind the wall to generate lateral loads. Maximum Pressure can be entered to instruct the program to limit the lateral pressure intensity. (The pressure diagram then becomes uniform). Passive Pressure will be used for the full depth of soil in front of the wall to resist sliding. Soil Density will be used for soil weight, and Soil Height Over Toe will be used to define passive pressure height, vertical load, and will create an active pressure resisting overturning.
- You can apply two additional vertical Loads: an Axial Load to the top of the stem (with optional eccentricity), and Toe and Heel Surcharges. If the heel surcharge is permanent, you can specify that it Should Be Used To Resist Overturning.
- In addition to the lateral loads created by the soil above the footing, you can apply additional Lateral Loads to the wall. Enter a Lateral Loads Acting on the Stem Above Soil when your wall will extend above the soil, such as a screen or guard wall. Impact and bracing loads can be applied to the wall using the Additional Lateral Load item, letting you specify a load intensity and length. You can also enter an Adjacent Footing Load, by specifying the magnitude of load and position relative to the rear of the topmost stem section.
- The Wall and Footing Data section is used to specify the retained height, stem height above soil, and footing dimensions. Zero entries are permitted for the key and either toe or heel width. While using the program, you can easily change these values often and recalculate [F9] to determine soil pressures, overturning stability, and sliding stability.
- The critical footing wall design values are given in the Summary area, where you can review calculated results and then modify the wall and footing data as required.
- The program will perform a Sliding Check when you enter Footing/Soil Friction coefficients, and can Neglect a certain height of soil, if the soil in front of the wall is non-compacted.
- By simply entering the concrete strength, steel strength, and minimum steel percentage the program will provide a full Footing Analysis and Rebar List.
- Stem Design can be performed for up to five independent sections of the wall. By specifying Wall Construction Type, Design Height, and Wall Thickness and Reinforcing, each stem section can be easily refined for an optimum design.
- The Summary of Overturning and Resisting Moment table should be reviewed if you have any questions on how the vertical and lateral loads are being applied to the wall.
- When you are satisfied with the wall, Print or Save the current worksheet, choose Reset to start another wall design, or use the Access Menu to choose another program.


## Unique Features

- Slope of backfill may be varied from flat to 45 degrees.
- Either a concrete or masonry stem can be specified. When concrete is chosen, the wall thickness, rebar size, and location is used to calculate the minimum spacing for the rebar. When masonry is specified, the option of special inspection is entered in addition to the above values, and the maximum rebar spacing is calculated at 8" modules.
- The program has the unique ability to design screen walls for conditions where the wall extends a distance above the soil which is much greater than the retained height.


## Assumptions \& Limitations

- Both active and passive pressures are applied as Equivalent Fluid Pressures.
- Friction coefficient is assumed to be applicable for both friction only and friction combined with passive pressure cases.
- Design for bending reinforcement in Toe and/or Heel of footing is calculated using d = thickness minus 3 ".
- If surcharge exists above the Toe or Heel, the soil height over those areas will be increased (internally) by the ratio of Surcharge/Soil Density.
- All concrete design is based on ACI Ultimate Strength Design.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Data Tab



## Retained Height

This is the height of retained earth measured from top of footing to the top of soil behind the stem (over the heel). When the backfill is sloped, the soil will slope away and upwards from this height. The actual retained height used for overturning and soil pressure calculations will be the retained height projected at the vertical plane of the back of the heel, but for stem moments, no such increase will be made. Using the spin-buttons you can vary this in 3 -inch increments (you can type in any number). After each entry you can press the tab key to advance to the next entry, or use your mouse to position the cursor.

## Wall Height Above Retained Soil

Use this entry to specify if the wall extends above the retained height. This entry is typically used to define a "screen wall" projection above the soil retained. This extension can be used as a weightless "Fence" or a concrete or masonry stem section without any soil retained behind it. You can enter wind load on this projection using the entry "Load @ stem above soil" on the "Loads" tab. We'll handle the fence when we get to the STEM design screen.

## Height of Soil Over Toe

Measured from the top of footing to top of soil, this may vary from a few inches to a few feet (it is measured in inches) depending upon site conditions. It is used to calculate passive soil pressure depth (considering "Ht. to Neglect" on "Sliding" tab). This soil can also be used to calculate an active pressure to reduce overturning; this is a choice on the Options Screen, and can have significant effect if the footing is well below grade.

## Water Table Height Over Footing

If you want to design for a water table condition, enter the maximum height from top of footing to
water table level. The program will then compute the added pressures for saturated soil on the heel side of the footing, including buoyancy effect, to calculate increased moments and shears on the stem, and overturning. Do not enter a height greater than the retained height, nor a liquid other than water.

## Soil Slope

You may enter any backfill slope behind the wall. Use the drop-down menu or type the slope ratio as Horiz/Vert. The soil must be level or slope upward. Negative backfill slopes (grade sloping downward, away from the wall) are not allowed.

The program will use this slope to 1 ) include the weight of a triangular wedge of soil over the heel as vertical load, and 2) compute overturning based upon an assumed vertical plane at the back face of the footing extending from the bottom of the footing to ground surface - a steeper slope will result in a higher overturning moment. We suggest not using a slope steeper than 1.5 to 1.0 unless approved by the geotechnical engineer. The program will not accept a backfill slope steeper than the angle of internal friction.

## Allowable Soil Bearing

The maximum allowable soil bearing pressure for static conditions. Using the spin buttons you can increment in 50 psf steps. Usual values for this vary from 1,000 psf to 4,000 psf or more.

## Lateral Pressure Method

Here you can choose between E.F.P. or Rankine formula or Coulomb formula. EFP means "Equivalent Fluid Pressure," where you can enter a lateral soil pressure in psf per foot of depth. "Rankine" or "Coulomb" instructs Retain Pro to use the Rankine or Coulomb Method to calculate active and passive soil pressures using an entered angle of internal friction for the soil. When Rankine or Coulomb is chosen, the Ka*Density value for active pressure is computed.

## Active Soil Pressure - Heel Side (EFP Method Chosen)

Active Pressure: Ka * Gamma (Rankine or Coulomb Method Chosen)
Enter the equivalent fluid pressure (EFP), or the angle of internal friction if Rankine or Coulomb is chosen, for the soil being retained that acts to overturn and slide the wall toward the toe side. This pressure acts on the stem for stem section calculations, and on the total footing+wall+slope height for overall stability and soil pressure calculations.

Commonly used values, assuming an angle of internal friction of 34 , are 30 pcf for a level backfill; 35 pcf for a $4: 1$ slope; 38 pcf for a $3: 1$ slope; 43 pcf for a $2: 1$ slope; and 55 pcf for a $1.5: 1$ slope. These values are usually provided by the geotechnical engineer. If the Rankine or Coulomb method had been chosen, these values will be computed using those formulas.

When the retained soil is sloped, a vertical component of the lateral earth pressure over the heel can be applied vertically downward in the plane of the back of the footing. You can choose to apply this force for overturning resistance, sliding resistance, and/or for soil pressure calculations, by checking the boxes on the CRITERIA > Option screen.

## Angle of Internal Friction (Rankine or Coulomb Method Chosen)

This value is entered in degrees and is the angle of internal friction of the soil. This value is usually provided by a geotechnical engineer from soils tests, but can also be found in reference books or building codes for various typical soil classifications. This value is used along with Soil Density within the standard Rankine and Coulomb equations to determine "Ka" and "Kp" multipliers of density to give active and passive soil pressure values.

## Active Soil Pressure - Toe Side

If the EFP method is chosen, enter the active pressure to be used on the toe side of the wall. This active pressure is used along with the "Soil Height over Toe" value (entered on the Sliding tab) to calculate a stabilizing soil force on the wall. This front side of the wall is assumed to be level.

When either the Rankine or Coulomb method is chosen, the angle of internal friction is used in the Rankine formula with an assumed level toe-side slope.

The active pressure from soil over the toe partially counteracts the heel-side active pressure for overturning calculations.

## Passive Pressure (EFP Method Chosen)

Passive Pressure: Kp * Gamma (Rankine or Coulomb Method Chosen)
This is the resistance of the soil in front of the wall to being pushed against to resist sliding. Its value is in psf per foot of depth (pcf). For the E.F.P. method, you input this value, which is usually obtained from the geotechnical engineer. If the Rankine or Coulomb method is chosen, it will be computed and entered for you. Its value usually varies from 100 pcf to about 350 pcf .

## Soil Density

Enter the soil density for all earth above the toe and heel of the footing. This weight is used to calculate overturning resistance forces and soil pressures using the weight of the soil block over the projecting toe and heel of the footing. When surcharges are applied over the soil, the surcharges are transformed to equivalent uniform lateral loads acting on the wall by the ratio force = (Surcharge/ Density)*Lateral Load. Input this value in Ibs. per cubic foot. Usual values are 110 pcf to 120 pcf.

## Material Data Tab

This screen allows you to change properties of masonry and concrete. It also allows you to decide what load factor (1.4 or 1.7) to use for factored soil pressure attributable to dead loads.


## For Masonry

Concrete Block Type

This allows you to select Lightweight, Medium weight, or Normal weight concrete masonry units.

## Factor Applied to $\mathbf{f}_{\mathrm{m}}^{\prime}$ for Calculation of Em

The modulus of elasticity for masonry is $750 \mathrm{f}_{\mathrm{m}}^{\prime}$ (UBC '97 2106.12.1). This entry allows you to select a multiplier other than 750.

## Multiplier Applied to Wall Weight from Tables

This entry allows you to increase or decrease the internal default values of stem weights, as displayed on the STEM screen.

## For Concrete

## Stem concrete weight

This is usually 145-150 pcf, but may be changed with this entry.

## Footing concrete weight

This option is necessary since if there is any buoyancy effect, this will reduce the effective weight of the footing concrete.

## ACI Factored Soil Pressure

This gives you two choices for computing the factored moment in the toe. Select either a 1.7 load factor for both dead load and pressure attributable to live load and lateral soil pressure on the wall. Alternatively, and less conservative, use a load factor of 1.4 for dead load (footing and superimposed earth) and 1.7 for live load and upward soil pressure attributable to lateral soil pressure.

## Options Tab

This screen is critical to your design, since many subsequent calculation results will be affected. Review and check these boxes carefully.


## Slab is Present to Resist all Sliding Forces

Check this box when a slab is in front of the wall to resist lateral sliding. This negates sliding concerns (but check the slab if necessary). For restrained wall footings, it deletes the lateral force (base stem reaction) applied to the top of the footing, puts "not applicable" in the sliding ratio display, and dims the sliding entries on the FOOTING > KEY DIMENSIONS AND SLIDING sub-tab screen. The slab restraint is assumed to be at the top of the footing and the program does not allow it to be placed higher-if this condition occurs, append your printout with hand-calcs,

## Use Toe Surcharge to Resist Sliding and Overturning

Checking this box will include the weight of soil overburden on the toe to resist overturning and add to its weight for frictional resistance.

## Use Heel Surcharge to Resist Sliding and Overturning

Checking this box will include heel surcharge. If surcharge is live load and its use would be non-conservative, don't check this box.

## Neglect Upward Pressure at Heel

For heel calculations you may choose to neglect the upward soil pressure, typically resulting in greater heel moment. If this box is checked the Mu for upward loads will be zero.

## Toe Active Pressure Used

Checking this box will apply the toe side active pressure to reduce overturning moment and reduce sliding force to a net sliding force to be resisted.

## Choices for Use of Vertical Component of Active Pressure

The vertical component of the lateral pressure is applied at a vertical plane at the back of the footing.

You can optionally use this to resist overturning, sliding, or for soil pressure calculations. (For the latter it can make a considerable difference). Checking these boxes applies the options. For a level backfill, this option will back-solve the EFP method to find the equivalent internal friction angle, then apply this vertical component equal to tan. If either the Rankine or Coulomb method had been chosen, this
vertical component would be tangent of $\Phi / 2$.
Note that most texts suggest using the vertical component only to resist overturning. For a level backfill these options are usually not used.

## Loads / Vertical Loads Tab

Additional loads on the wall are entered on these sub-tabs.


## Surcharge Over Toe

If other loads are imposed directly above the toe (such as a slab, storage, or moving load), these may be entered here (you have already entered the height of the soil over toe). This surcharge is divided by soil density and multiplied by active pressure to calculate an equivalent lateral load. This surcharge is used to calculate soil pressure. You can use this surcharge to resist sliding and overturning by clicking the box on the CRITERIA > Options sub-tab.

## Surcharge Over Heel

This surcharge is considered uniformly applied to the top surface of the retained soil (over the heel). It may be entered whether or not the ground surface is sloped, but is always taken as a vertical force. This surcharge is divided by the soil density and multiplied by the Active Pressure to create a uniform lateral load applied to the wall. You can use this surcharge to resist sliding and overturning by clicking the box on the CRITERIA > Options sub-tab.

## Axial Loads Applied to Top of Stem

These loads are considered uniform load along the length of the wall. They are applied to the top of the topmost stem section and effect the design of masonry stems only. The dead and live loads are used to calculate stem design values and factored soil reaction pressures used for footing design. Only the dead load is used to resist overturning and sliding of the retaining wall.

## Axial Load Eccentricity

This is the eccentricity of the axial load with respect to the centerline of the uppermost stem section. The eccentricity moves the load toward the toe, causing bending moments that are additive to those caused by the lateral soil pressure over the heel (negative eccentricities are not accepted).

## Adjacent Footing Load

This entry gives you the option of placing a footing adjacent and parallel to the back face of the wall, and have its effect on the wall included in both the vertical and horizontal forces on the wall and footing. Refer to the General Reference Diagram for locations where input measurements should be taken.

For a "Line Load" the load entered is the total load per foot parallel to the wall (not lbs. per sq. ft ).
If the adjacent footing is specified as "Square Footing" (not line load), the load entered should be the adjacent footing load divided by its dimension parallel to the wall, giving a pounds per lineal foot value, as for a continuous (line) footing.

A Boussinesq analysis is used to calculate the vertical and lateral pressures acting on the stem and footing. The program uses an assumed Poisson ratio of 0.3. (See Foundation Analysis and Design, 5th Edition, by J. E. Bowles, McGraw-Hill, pages 629-639)

Use of the Adjacent Footing may not be applicable if the horizontal distance from back face to stem to closest edge of adjacent footing is greater than the distance from top of wall footing to bottom of Adjacent Footing (i.e. outside an assumed line of influence).

When the Boussinesq analysis is used, the program may require additional computing time, depending upon the speed of your computer. To avoid this delay (which occurs any time any entry is changed) we suggest you use a vertical load of zero until your data entry is nearly finalized. Then enter the actual footing load and modify your final values.

Suggestion: For adjacent truck or highway loading, it may be preferable to use a heel surcharge (uniform) of 250 psf (or more) instead of treating it as an "adjacent footing."

Do not use this feature if the adjacent footing load is farther from the stem than the retained height, less the depth of the adjacent footing below the retained height, since at this distance it will not have significant effect on the wall.

## Footing Width

Width of the adjacent footing measured perpendicular to the wall. This is necessary to create a one-foot long by Width wide area over which the load is applied.

## Footing Eccentricity

This entry is provided in case the soil pressure under the adjacent footing is not uniform. Enter the eccentricity of the resultant force under the adjacent footing from the centerline of the footing. Positive eccentricity is toward the toe, resulting in greater pressure at the side of the adjacent footing closest to the stem. The program will use the vertical load and eccentricity and create a trapezoidal pressure distribution under the adjacent footing for use with the Boussinesq analysis of vertical and lateral pressures.

## Wall to Footing Centerline Distance

Distance from the center of the adjacent footing to the back face of the stem at the retained height.

## Footing Type

This drop down menu selection allows you to enter either an isolated footing using the "Square Footing" selection, or a continuous footing using the "Line Load" selection.

## Base Above/Below Soil at Back of Wall

Use this entry to locate the bottom of the footing with respect to the Retained Height. Entering a negative number places the footing below the soil. A positive entry would typically only be used when the soil is sloped and the footing resides "uphill". To insert a negative number, first type the number then press the "-" (minus) sign.

Note: If the "Adjacent Footing" is another retaining wall at a higher elevation, the Boussinesq analysis may be used for the vertical load applied to the soil from the wall, however the design must also consider the lateral (sliding) loads from that adjacent wall. This load could be applied as "Added Lateral

Load", however this is at the discretion of the designer and is not within the scope of the program. Caution is urged for this condition. See discussion in the companion book: Basics of Retaining Wall Design.

## Loads / Lateral Loads Tab



## Load @ Stem Above Soil

This load (typically a wind load) will be applied to that part of the stem projecting above the retained height defined by the entry "Wall height above retained soil." It is used to calculate overturning moment and shear, stem design moment and shear, and soil pressures. Customary values are 10 psf or higher. Only a positive " + " value can be entered (i.e., the force may only be applied in a direction to add overturning, in the direction of the active soil pressure).

## Added Lateral Load

This input allows you to specify an additional uniformly distributed lateral load applied to the stem. You can use it to apply a seismic load to the wall, an additional uniform lateral load due to soil pressure, or apply a short but intense load due to impact of a car or similar force (this case can be modeled by separating the "Height to Bottom" and "Height to Top" by just one foot, and using an "Added Lateral Load" equal to the total added force). This load is factored by 1.7 to calculate concrete moments and shears.

## Height to Top

This dimension defines the upper limit of the added lateral load measured from the top of the footing. Do not enter a dimension higher than the top of the wall ("retained height" plus "Wall height above retained soil").

## Height to Bottom

This dimension defines the beginning (or bottom) of the added lateral load measured from the top of the footing.

## Stem Tab

The layout of this screen will change depending upon whether you previously chose a conventional cantilevered wall, a tapered stem wall (earth side battered), or a gravity wall. This screen is for a straight stem non-battered wall.

Criteria｜Loads S	s Stem Footing	Stability｜Des	Description
		$\mathrm{fm} \quad 1$	1，500．0 ${ }^{\text {a }} \mathrm{psi}$
Material Ma	Masonry ${ }_{-}$	Fs 24，	$24,000.0$ 考 psi
Support Height 5.000 团 ft ，			
Thickness $\quad 3 \quad \mathrm{\square}$ in Inspectior $\Gamma$ Solid Groulv			
Fix Stem＠Base	ase？$\quad \mathrm{V}$	Inspectior $\Gamma$	iorl Solid Groulv
Stem Design．．．			
Ht．Above Footing	（边 Top Support	$\frac{M m a x}{\text { Etwn Ends }}$	Ends $\frac{\text { ft Stem Base }}{0.00 \mathrm{ft}}$
Rebar Depth＇d＇	＇d＇$\quad 3.81$ in	3.81 in	in $\quad 3.81$ in
	（n／a）	Toe Side	Earth Side
Actual Moment	t $\quad 0.0 \mathrm{ft}-\mathrm{\#}$	130.4 ft －\＃	fft－\＃－291．7 ft－\＃
Allowable Momer	mer $619.4 \mathrm{ft}-\#$	$619.4 \mathrm{ft}-\mathrm{\#}$	$\begin{aligned} & 4 \mathrm{ft}-\# \end{aligned} \begin{array}{r} 619.4 \mathrm{ft}-\mathrm{\#} \\ \text { Stem ok } \end{array}$
Rebar Lap Req＇d $\quad 25.00$ in $\quad 25.00$ inRebar Hook Develop Length into footing... ．			
			．．．． 6.00 in
Shear＠Section	tion $\quad 0.00 \mathrm{lbs}$		350.00 lbs
Actual Stress Allowable Stress	$\begin{array}{r} 0.000 \\ 19.365 \mathrm{psi} \end{array}$		$8.744 \mathrm{psi}$

## Wall Type

If Restrained Stem is selected，you may have a lateral support（such as an abutting roof，slab－on－grade over backfill，or tiebacks）．The lateral support should be near the top of the wall，although some extension of the wall above the support is permitted．You have the option of fixing the base（as for a cantilevered wall）or assuming it pinned．Intermediate degrees of fixity are not permitted．The program will compute moments，shears，and stresses at three locations：base（negative moment if fixed；zero moment if pinned），maximum positive moment between base and support，and at the point of support．

## Material

Select Masonry or Concrete．Only one material can be used，and must be of constant thickness．

## Support Height

Use the spin buttons（or type the value）for height from base to level of support．To check the overall wall height that you had input（retained height plus height above soil）just click the CRITERIA tab．

## Thickness

The program only permits a constant thickness throughout the height of the wall． Use the spin button（or type）the choice for thickness．If Masonry was chosen，the drop down menu will give you modular choices．

## Fix Stem＠Base

Clicking this box will check footing and stem for $100 \%$ fixity at base．If unchecked，pin condition will be assumed．
$f_{m}^{\prime}$ or $f_{c}^{\prime}$
Enter choice for masonry or concrete.

## $\mathrm{F}_{\mathrm{s}}$ or $\mathrm{F}_{\mathrm{y}}$

Enter choice for masonry or concrete.

## Rebar Cover

This appears if a concrete stem is chosen and lets you enter desired cover on toe and earth side.

## Inspection

This is applicable to masonry stems only, and if checked, the full allowable ${ }^{\mathrm{f}_{\mathrm{m}}}$ used in flexure, shear, and axial stress will be used. If not checked, the allowable values will be reduced by one-half. The Uniform Building Code requires this reduction if Special Inspection is not provided.

## Solid Grout

This applies to masonry only, and if this box is checked the weight of the wall will be based upon industry standard solid-grout weight for either lightweight, medium weight, or normal weight. If this box is not checked, the program will calculate the weight based upon grouting of only cells containing reinforcing. This also affects equivalent solid thickness for stem shear calculations

## Short Term

This is used for masonry design only, and indicates the allowable overstress multiplier ( 1.33 for wind and seismic). For a concrete wall this does not apply since strength design is use, and this entry should be 1.0.

## Stem Design

This allows you to design or check wall moment and shear at three locations: @ Top Support, @ Mmax Between Ends, and @ Stem Base. If base is pinned, the entries under @ Stem Base will be zero or dimmed.

## Ht. Above Footing

This displays, from left to right, the distance up to lateral support, height to point of maximum positive moment, and at the base of the stem.

## Rebar Depth "d"

From the wall thickness and center/edge condition specified, the program will determine the " d " to be used for design (using the internal tables and default modifications). See Rebar Position, above. For concrete, the program will automatically add to cover chosen one-inch allowance for one-half bar diameter, for determining " d " to be used.

## Rebar Size

Select from the drop-down menu.

## Rebar Location

Click the button for Center or Edge.

## Rebar Spacing

Enter your trial choice, or for masonry, select from the drop-down menu.

## Actual Moment

This will show moments at the indicated locations with (+) and (-) as applicable. For concrete the moments will be factored by 1.7 .

## Allowable Moment

This will be calculated based upon the data you have entered. For concrete, it will be based upon strength design (factored by 1.7).

## Status

This indicates whether your stem design is OK at the selected height or at the base or displays Mu > Phi Mn or As < min or As > max.

## Rebar Lap Req'd Above / Below

For masonry, the lap required is 48 bar diameters for $\mathrm{Fs}=24,000 \mathrm{psi}$ and 40 diameters for $\mathrm{Fs}=$ 20,000 psi.

For concrete, a Class B splice is assumed, which multiplies the development length by 1.3 (See ACI 12.15.2), and excludes reduction for stress level.

Note: The program does not compute or display bar cut-off points, which must be done manually, or extend positive reinforcing so it is acceptable.

## Shear at Section

This is the total shear at the indicated height (factored for concrete).

## Actual Shear

Unit shear stress at designated height computed by area = 12 " $\mathrm{d} "$.

## Allowable Shear

Based upon $0.852\left(\left[f_{c}^{\prime}\right)^{1 / 2}\right.$ for concrete and $\left(f_{m}^{\prime}\right)^{1 / 2}$ for masonry, reduced one-half for no inspection, and not to exceed 50 psi.

## Footing Tab / Footing Dimensions

This is the screen where you design the footing, by manipulating the heel and toe widths so the actual soil pressure is less than allowable, or you can use the Automatic Footing Design button (described below) to size the footing. This screen also gives you choices for toe and heel reinforcing, or indicates if it is theoretically not required. It also suggests key reinforcing, if applicable.


## Toe Width

This is the width of the Toe of the footing, and is measured from the front edge of the footing to the front face of the stem. Can be set to 0.00 for a property line condition. All overturning and resisting moments are taken about the bottom-front edge of the toe.

## Heel Width

Distance from front face of stem to back of heel projection. If a dimension is entered that is less than the stem width at the base, the program will automatically reset the heel dimension to at least the stem width. For a property line at the rear face of the stem, this dimension would be the stem width.

## Total Footing Width

The calculated width of the footing, Toe Width + Heel Width.

## Footing Thickness

Total footing thickness, NOT including the key depth (if used). For bending and shear design of the footing, the rebar depth "d" is taken as Footing Depth - Rebar Cover - $1 / 2$ " (to account for the rebar radius). If footing thickness is inadequate for shear capacity a red warning indicator will appear.

The footing thickness must be greater than the rebar embedment length required for the bottom stem reinforcing + rebar cover. If you enter a dimension less than required for stem bar embedment, a red message will appear at the top of the screen. The program adds the calculated hooked bar embedment from the STEM screen and adds it to the rebar cover you have chosen for the bottom of the footing (usually 3 "). This will trigger the red warning. If inadequate thickness, increase the thickness, or change the stem dowels, until this message disappears.

## Center Stem on Footing

Clicking this bar will adjust the toe and heel widths you have entered so stem is centered on the footing but overall width remains the same.
$f_{c}^{\prime}$
Enter concrete compressive stress for footing.
Fy
Allowable rebar yields stress to be used for design of footing bending reinforcement.

## Rebar Cover in Heel/Toe

Distance from the face of concrete to edge of rebar. The program will add $1 / 2^{\prime \prime}$ to this value and subtract the result from the footing thickness to determine the bending "d" distance.

## Minimum As Rebar Ratio

Enter the absolute minimum steel percentage to be used to calculate rebar spacing requirements ( 0.0018 Ag for $\mathrm{Fy}=60,000 \mathrm{psi}$ ). If the \% steel required by stress analysis is less that 200/Fy, the minimum of (200/Fy -or- 1.333 * bending percentage required) is calculated and compared with the Minimum As\% entered here, and the greater of the two used to calculate rebar spacing requirements.

## Rebar at Stem Base

This is a reminder of the size and spacing of the bottom stem reinforcing, to make it easier for you to select toe reinforcing to match (toe reinforcing is usually the bottom stem dowel bars bent toward the toe).

## Toe Reinforcing Options

This list gives you choices for reinforcing sizes and spacing for the bottom toe bars. Typically the toe bars are extensions of the stem dowels, which are bent out toward the toe. Therefore, you will probably want only to verify that the stem dowel bar size and spacing do not exceed the selections offered.

## Heel Reinforcing Options

This list gives you choices for acceptable sizes and spacing of top heel bars. It is desirable to select a spacing that is modular with the stem dowel bars for ease of construction. Note: The program does not calculate the heel bar development length inward from the back face of the stem (where the moment is maximum). You can refer to Appendix B for development lengths in concrete, which can be adjusted for the stress level in the heel bars. When detailing footing reinforcing it is important to consider and specify development lengths for both toe and heel bars.

## Rebar Selections

Use these three entries to pick your toe, heel, and if applicable, key reinforcing. The "Max @" message tells you the maximum spacing allowed for the bar selected.

## [Footing Width Automatic Design]

Clicking this button will cause the program to iterate footing widths until the soil pressure, overturning stability, and sliding stability ratios are acceptable. You can select either a fixed toe or heel distance, or balance the toe and heel dimensions. You can also select whether the resultant must be within the middle third of the footing. After clicking "Design," the widths required will be displayed.

Automatic footing design is not available for Restrained Walls.

## Footing Tab / Key Dimensions and Sliding

This screen tells you whether passive soil resistance plus friction resistance is adequate to resist sliding with at least a 1.5 safety factor. If inadequate, you can design a key. If a key is used, the previous footing screen will check whether reinforcing is required by first checking the plain concrete flexural capacity (for computing section modulus, $3^{\prime \prime}$ is deducted from the key width
per UBC '97). If the key depth to width ratio is less than about 2:1, it's usually adequate.


## Key Depth

Depth of the key below the bottom of footing. The bottom of the key is used as the lower horizontal plane for determining the size of the passive pressure block from the soil in front of the footing. Adjust this depth so the sliding safety factor is acceptable, but not less than 1.5. A depth greater than three feet or one-half the footing width is not recommended.

## Key Width

Width of the key, measured along the same direction as the footing width. This is usually 12 "-14", but generally not less than one-half the key depth so flexural stress in the key is adequate.

## Key Location

Enter the distance from the front edge of the toe to the beginning of the key. Do not enter a distance greater than the footing width minus key width.

## Align with Stem

Click this button to set front edge of key aligned with front of stem. If the key is then made the same width as the stem, the stem bars could extend down into the key to achieve development.

## Soil Over Toe to Neglect for Sliding Resistance

Since the soil over the toe of the footing is usually loose and uncompacted, it may have little or no passive resistance. This entry gives you the option of neglecting any or all of the Height of Soil Over Toe that you had entered in the CRITERIA screen. You can neglect the soil over toe plus the footing thickness, if desired.

## Footing/Soil Friction Factor

Enter this friction factor here, which is generally provided by the geotechnical engineer. It usually varies from 0.25 to 0.45 .

## \% Passive Usable for Sliding Resistance

This may be a stated restriction in the geotechnical report. Enter a value from zero to $100 \%$.

## \% Friction Usable for Sliding Resistance

This may be a stated restriction in the geotechnical report. Enter a value from zero to $100 \%$.

## Lateral Pressure @ Base of Footing

This is the total lateral force against the stem and footing which causes the wall to slide and which must be resisted. It is the total active pressure on the heel side less the active pressure on the toe side. The latter will be excluded if you choose to delete it on the OPTIONS screen.

## Less Passive Pressure Force

This uses the allowable passive pressure in pcf and the available depth (soil above toe less height to neglect plus footing thickness) to compute the total passive resistance, again multiplied by the percent usable you selected. Weight due to toe surcharge, if applicable, will also be added. If a key is used, the available passive pressure depth will be to the bottom of the key.

## Less Friction Force

This is the total vertical reaction multiplied by the friction factor, again multiplied by the percent usable you selected.

## Added Resisting Force Required

If this is 0.0 lbs ., the forces balance, but there may be no safety factor. Watch the Sliding Factor of Safety for an adequate value (usually 1.5). Add a key as required.

## Added Resisting Force Required for 1.5:1 Safety Factor

This is the additional force required to be resisted by a key to achieve a 1.5 safety factor. If zero, no key is required.

## Key Reinforcing

If flexural tension is insufficient to resist bending in key, a message will appear indicating reinforcing required. You can vary the width of the key until the message disappears. Or you can manually calculate reinforcing required.

## Sliding Factor of Safety

This gives you the ratio of passive and friction resistance to the total lateral force. This should be at least 1.5.

NOTE : If lateral restraint is provided by an abutting floor slab (by checking the box on the CRITERIA > OPTIONS screen), the sliding factor of safety displays will be deleted, but the "Lateral Force @ Base of Footing" will be displayed for checking restraint adequacy of the slab.

## Stability Tab

For Restrained Walls the STABILITY screen will appear differently, summarizing the conditions you have set regarding base fixity and base lateral restraint.


Moment used for Soil Pressure Calc $=-1.1 \mathrm{ft}-\boldsymbol{\#}$

A banner will display whether a slab is present to resist base sliding (box checked on CRITERIA $>$ OPTIONS screen) and whether fixed or pinned at base, as previously selected on the STEM screen.

The reaction at the top restraint will be displayed.
The Sliding forces will be displayed, and indicate counteracting active pressure on toe side, if this option was selected on the Options screen.

The Moment at Top of footing applied from Stem is the theoretical overturning of the footing due to the reaction at the base of the stem, if the stem is "pinned" at the base. In actual practice the footing will be constructed integrally with the stem (not a true "pin") therefore this displayed overturning moment can be ignored provided the connection between footing and stem is sufficient. You can check the allowable moment at the base of the stem and compare it to the displayed "overturning" moment to verify this.

The "Moment used for soil pressure calc," if slab restraint is provided, is the total bearing load times the eccentricity (displayed on Results screen on right). If slab restraint is not provided, and since bottom of stem is considered "pinned," then this is (theoretically) the bottom-of-stem reaction multiplied by the footing depth and may generally be ignored per the preceding paragraph explanation.

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results Tab

Results	Construction	Wal	
Soil Loading Results (Service load			
Soil Pressure @Toe			445.0 psf
Soil Pressure @ Heel			448.3 psf
Allowable			2,500.0 psf
Total Bearing Load resultant ecc.			$\begin{gathered} 893.3 \mathrm{lbs} \\ 0.01 \mathrm{in} \end{gathered}$
Eccentricity within middle third			
Footing Results			
ACl Factored Pressure @Toe			623.0 psf
ACl Factored Pressure @ Heel			627.7 psf
Mu:Design @ Toe			206.9 ft -\#
Mu:Des	n@Heel		54.4 ft-\#
Heel moment OK using M < S*Fr			

## One-Way Footing Shears...

Shear ( Toe	4.061 psi
Shear ( M Heel	3.203 psi
Allow. Footing Shear	93.113 psi

## Stability Ratios

Overturning Restrained by Stem:Footing
Sliding is Restrained by an adjacent slab

## Soil Pressure @ Toe and Heel

This is the resulting unfactored soil pressure for both the toe and heel. If the eccentricity is outside the middle third, the heel pressure will show 0.00 . (Note: when the resultant is outside the middle-third, the program calculates the toe pressure assuming no "tension" at heel).

## Allowable Soil Pressure

This is for your reference as input on the Criteria input Screen

## Total Bearing Load

This is the sum of all vertical forces.

## Resultant Eccentricity

Distance from center of footing to resultant soil pressure.

## Eccentricity Within/Outside Middle Third

The resultant is outside the middle third of the footing width if the eccentricity is greater than one-sixth the footing width. (If outside the middle third, the program computes the toe soil pressure assuming no "tension" at heel.)

## ACI Factored Soil Pressure @ Toe and Heel

ACI or AASHTO load factors are applied to all dead and live loads to determine total vertical load for soil pressure used in calculating footing moments and shears. This load is then applied at the same eccentricity calculated for service load soil pressures to yield the actual factored soil pressures for footing design using ultimate strength design principles. Note that since only factored vertical loads are applied at the non-factored resultant eccentricity, a true 1.7 load factor applied to lateral earth pressure is not used for footing design. If resultant vertical load eccentricity were to be calculated using factored loads, the distance would not truly represent a correct state of stress in the soil. ACI load factors are intended to give conservative results for stress. Calculation of a factored load eccentricity would give soil pressure diagrams that would not always represent the actual soil pressure distribution under the footing, and yield unreasonable results. Factored lateral earth pressure, however, is always used for concrete stem design.

## Mu Design @ Toe/Heel

These are the factored (by 1.4) moments at face of stem for toe and heel moments. Since neither can be greater than the stem base moment (factored if concrete stem), the latter may govern. These moments will be reduced if you choose to neglect the upward soil pressure on the Criteria > Options tab.

A message will indicate which controls.

## Shear @ Toe and Heel

The actual shear is calculated from the one-way action in the footing at a distance "d" (footing thickness - rebar cover) from the toe side of the bottom stem section, and at the face of the stem on the heel side. If "d" is greater than the projecting toe or heel length, then the one-way shear is zero.

## Allowable Footing Shear

The allowable unit shear equals $\left(0.85 * 2 * f_{\mathrm{c} 1 / 2}^{\prime}\right)$.

## Construction Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Wall Loading Diagram Tab

This tab provides a sketch of the wall and it's applied loads. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Sample Printout




Description

Summary of Forces on Footing: S   Forces acting on footing for soil pressure				
Load \& Moment Summary For Footing: For Soil Pressure Calcs				
Mament (G) Top of Footing	App	from Stem	$=$	-291.7 t-\#
Surcharge Over Heel	=	lbs	ft	ft-\#
Axial Dead Load on Stem	$=$	lbs	ft	t-\#
Soil Over Toe	=	lbs	ft	ft-\#
Surcharge Over Toe	$=$	lbs	ft	t-\#
Stem Weight	$=$	420.01 lbs	1.33 ft	560.0 t-\#
Soil Over Heel	$=$	183.31 lbs	1.83 ft	396.1 t-\#
Footing Weight	$=$	290.01 lbs	1.00 ft	290.0 t-\#
Total Vertical Force	$=$	893.31 lbs	Base Moment =	894.4 ft-\#

### 4.3 Tapered Stem Wall

This program provides calculation procedures necessary to perform complete design and analysis of a conventional cantilevered retaining wall.

The retaining wall may be loaded with any of the following load combinations :

- Any angle of sloped backfill.
- Surcharge loading above heel or toe.
- Eccentric axial dead and live load on stem.
- Lateral and vertical load from an adjacent footing.
- Wind or seismic force on projecting portion of stem.
- An additional uniform lateral load may be applied to the wall.

The following overall dimensions can be specified:

- Retained height.
- Toe and heel dimension.
- Wall extension above retained height.
- Footing key depth, width, and location.
- Soil height over the toe.

The following stability checks are performed:

- Total overturning and resisting moment.
- Optional Inclusion of vertical active pressure on the rear face of the wall to resist overturning.
- Sliding resistance using both passive and active pressure.
- Both heel and toe of the footing are designed as follows:
- Toe Design - Find actual moment at stem face, check required minimum reinforcing, list rebar choices, and check one-way shear.
- Heel Design - Find moment at stem face, check required minimum reinforcing, list rebar choices and check one-way shear. User may neglect upward soil pressure for conservative design.

Also, the program has the unique ability to design screen walls (freestanding walls where the retained height is low and the projection above the soil is higher). Wind and seismic loads may be applied to the projecting portion, and an increased allowable stress may be used as allowed for short term loadings.


## Basic Usage

- Entering Soil Data specifies the lateral earth pressures applied to the wall. Active Pressure will be used on over toe and/or heel unless Slope is non-zero. If this is the case, then the soil is sloped and Slope Pressure will be used behind the wall to generate lateral loads. Maximum Pressure can be entered to instruct the program to limit the lateral pressure intensity. (The pressure diagram then becomes uniform). Passive Pressure will be used for the full depth of soil in front of the wall to resist sliding. Soil Density will be used for soil weight, and Soil Height Over Toe will be used to define passive pressure height, vertical load, and will create an active pressure resisting overturning.
- You can apply two additional vertical Loads: an Axial Load to the top of the stem (with optional eccentricity), and Toe and Heel Surcharges. If the heel surcharge is permanent, you can specify that it Should Be Used To Resist Overturning.
- In addition to the lateral loads created by the soil above the footing, you can apply additional Lateral Loads to the wall. Enter a Lateral Loads Acting on the Stem Above Soil when your wall will extend above the soil, such as a screen or guard wall. Impact and bracing loads can be applied to the wall using the Additional Lateral Load item, letting you specify a load intensity and length. You can also enter an Adjacent Footing Load, by specifying the magnitude of load and position relative to the rear of the topmost stem section.
- The Wall and Footing Data section is used to specify the retained height, stem height above soil, and footing dimensions. Zero entries are permitted for the key and either toe or heel width. While using the program, you can easily change these values often and recalculate [F9] to determine soil pressures, overturning stability, and sliding stability.
- The critical footing wall design values are given in the Summary area, where you can review calculated results and then modify the wall and footing data as required.
- The program will perform a Sliding Check when you enter Footing/Soil Friction coefficients, and can Neglect a certain height of soil, if the soil in front of the wall is non-compacted.
- By simply entering the concrete strength, steel strength, and minimum steel percentage the program will provide a full Footing Analysis and Rebar List.
- Stem Design can be performed for up to five independent sections of the wall. By specifying Wall Construction Type, Design Height, and Wall Thickness and Reinforcing, each stem section can be easily refined for an optimum design.
- The Summary of Overturning and Resisting Moment table should be reviewed if you have any questions on how the vertical and lateral loads are being applied to the wall.
- When you are satisfied with the wall, Print or Save the current worksheet, choose Reset to start another wall design, or use the Access Menu to choose another program.


## Unique Features

- Slope of backfill may be varied from flat to 45 degrees.
- Either a concrete or masonry stem can be specified. When concrete is chosen, the wall thickness, rebar size, and location is used to calculate the minimum spacing for the rebar. When masonry is specified, the option of special inspection is entered in addition to the above values, and the maximum rebar spacing is calculated at 8 " modules.
- The program has the unique ability to design screen walls for conditions where the wall extends a distance above the soil which is much greater than the retained height.


## Assumptions \& Limitations

- Both active and passive pressures are applied as Equivalent Fluid Pressures.
- Friction coefficient is assumed to be applicable for both friction only and friction combined with passive pressure cases.
- Design for bending reinforcement in Toe and/or Heel of footing is calculated using d = thickness minus 3".
- If surcharge exists above the Toe or Heel, the soil height over those areas will be increased (internally) by the ratio of Surcharge/Soil Density.
- All concrete design is based on ACI Ultimate Strength Design.


## Example

The data entry for this example is shown in the screen captures that accompany the Data Entry Tabs and Results \& Graphics Tabs sections to follow.


## Data Entry Tabs

This set of tabs provides entries for all input in this calculation. While you are entering data and switching between these tabs you can view the desired resulting information on the tabs on the right-hand side of the screen (calculated values, sketches, diagrams, etc.). A recalculation is performed after any entry data is changed. After each data entry you can view the results on the right-hand set of tabs.

## General Data Tab



## Retained Height

This is the height of retained earth measured from top of footing to the top of soil behind the stem (over the heel). When the backfill is sloped, the soil will slope away and upwards from this height. The actual retained height used for overturning and soil pressure calculations will be the retained height projected at the vertical plane of the back of the heel, but for stem moments, no such increase will be made. Using the spin-buttons you can vary this in 3 -inch increments (you can type in any number).
After each entry you can press the tab key to advance to the next entry, or use your mouse to position the cursor.

## Wall Height Above Retained Soil

Use this entry to specify if the wall extends above the retained height. This entry is typically used to define a "screen wall" projection above the soil retained. This extension can be used as a weightless
"Fence" or a concrete or masonry stem section without any soil retained behind it. You can enter wind load on this projection using the entry "Load @ stem above soil" on the "Loads" tab. We'll handle the fence when we get to the STEM design screen.

## Height of Soil Over Toe

Measured from the top of footing to top of soil, this may vary from a few inches to a few feet (it is measured in inches) depending upon site conditions. It is used to calculate passive soil pressure depth (considering "Ht. to Neglect" on "Sliding" tab). This soil can also be used to calculate an active pressure to reduce overturning; this is a choice on the Options Screen, and can have significant effect if the footing is well below grade.

## Water Table Height Over Footing

If you want to design for a water table condition, enter the maximum height from top of footing to water table level. The program will then compute the added pressures for saturated soil on the heel side of the footing, including buoyancy effect, to calculate increased moments and shears on the stem, and overturning. Do not enter a height greater than the retained height, nor a liquid other than water.

## Soil Slope

You may enter any backfill slope behind the wall. Use the drop-down menu or type the slope ratio as Horiz/Vert. The soil must be level or slope upward. Negative backfill slopes (grade sloping downward, away from the wall) are not allowed.

The program will use this slope to 1 ) include the weight of a triangular wedge of soil over the heel as vertical load, and 2) compute overturning based upon an assumed vertical plane at the back face of the footing extending from the bottom of the footing to ground surface - a steeper slope will result in a higher overturning moment. We suggest not using a slope steeper than 1.5 to 1.0 unless approved by the geotechnical engineer. The program will not accept a backfill slope steeper than the angle of internal friction.

## Allowable Soil Bearing

The maximum allowable soil bearing pressure for static conditions. Using the spin buttons you can increment in 50 psf steps. Usual values for this vary from 1,000 psf to 4,000 psf or more.

## Lateral Pressure Method

Here you can choose between E.F.P. or Rankine formula or Coulomb formula. EFP means "Equivalent Fluid Pressure," where you can enter a lateral soil pressure in psf per foot of depth. "Rankine" or "Coulomb" instructs Retain Pro to use the Rankine or Coulomb Method to calculate active and passive soil pressures using an entered angle of internal friction for the soil. When Rankine or Coulomb is chosen, the Ka*Density value for active pressure is computed.

## Active Soil Pressure - Heel Side (EFP Method Chosen)

Active Pressure: Ka * Gamma (Rankine or Coulomb Method Chosen)
Enter the equivalent fluid pressure (EFP), or the angle of internal friction if Rankine or Coulomb is chosen, for the soil being retained that acts to overturn and slide the wall toward the toe side. This pressure acts on the stem for stem section calculations, and on the total footing+wall+slope height for overall stability and soil pressure calculations.

Commonly used values, assuming an angle of internal friction of 34 , are 30 pcf for a level backfill; 35 pcf for a $4: 1$ slope; 38 pcf for a $3: 1$ slope; 43 pcf for a $2: 1$ slope; and 55 pcf for a $1.5: 1$ slope. These values are usually provided by the geotechnical engineer. If the Rankine or Coulomb method had been chosen, these values will be computed using those formulas.

When the retained soil is sloped, a vertical component of the lateral earth pressure over the heel can be applied vertically downward in the plane of the back of the footing. You can choose to apply this force for overturning resistance, sliding resistance, and/or for soil pressure calculations, by checking the boxes on the CRITERIA > Option screen.

## Angle of Internal Friction (Rankine or Coulomb Method Chosen)

This value is entered in degrees and is the angle of internal friction of the soil. This value is usually provided by a geotechnical engineer from soils tests, but can also be found in reference books or building codes for various typical soil classifications. This value is used along with Soil Density within the standard Rankine and Coulomb equations to determine "Ka" and "Kp" multipliers of density to give active and passive soil pressure values.

## Active Soil Pressure - Toe Side

If the EFP method is chosen, enter the active pressure to be used on the toe side of the wall. This active pressure is used along with the "Soil Height over Toe" value (entered on the Sliding tab) to calculate a stabilizing soil force on the wall. This front side of the wall is assumed to be level.

When either the Rankine or Coulomb method is chosen, the angle of internal friction is used in the Rankine formula with an assumed level toe-side slope.

The active pressure from soil over the toe partially counteracts the heel-side active pressure for overturning calculations.

## Passive Pressure (EFP Method Chosen)

Passive Pressure: Kp * Gamma (Rankine or Coulomb Method Chosen)
This is the resistance of the soil in front of the wall to being pushed against to resist sliding. Its value is in psf per foot of depth (pcf). For the E.F.P. method, you input this value, which is usually obtained from the geotechnical engineer. If the Rankine or Coulomb method is chosen, it will be computed and entered for you. Its value usually varies from 100 pcf to about 350 pcf.

## Soil Density

Enter the soil density for all earth above the toe and heel of the footing. This weight is used to calculate overturning resistance forces and soil pressures using the weight of the soil block over the projecting toe and heel of the footing. When surcharges are applied over the soil, the surcharges are transformed to equivalent uniform lateral loads acting on the wall by the ratio force = (Surcharge/ Density)*Lateral Load. Input this value in lbs. per cubic foot. Usual values are 110 pcf to 120 pcf.

## Material Data Tab

This screen allows you to change properties of masonry and concrete. It also allows you to decide what load factor ( 1.4 or 1.7 ) to use for factored soil pressure attributable to dead loads.


## For Masonry

## Concrete Block Type

This allows you to select Lightweight, Medium weight, or Normal weight concrete masonry units.

## Factor Applied to $\mathbf{f}_{\mathrm{m}}^{\prime}$ for Calculation of Em

The modulus of elasticity for masonry is $750 \mathrm{f}_{\mathrm{m}}^{\prime}$ (UBC '97 2106.12.1). This entry allows you to select a multiplier other than 750 .

## Multiplier Applied to Wall Weight from Tables

This entry allows you to increase or decrease the internal default values of stem weights, as displayed on the STEM screen.

## For Concrete

## Stem concrete weight

This is usually $145-150$ pcf, but may be changed with this entry.

## Footing concrete weight

This option is necessary since if there is any buoyancy effect, this will reduce the effective weight of the footing concrete.

## ACI Factored Soil Pressure

This gives you two choices for computing the factored moment in the toe. Select either a 1.7 load factor for both dead load and pressure attributable to live load and lateral soil pressure on the wall.

Alternatively, and less conservative, use a load factor of 1.4 for dead load (footing and superimposed earth) and 1.7 for live load and upward soil pressure attributable to lateral soil pressure.

## Options Tab

This screen is critical to your design, since many subsequent calculation results will be affected. Review and check these boxes carefully.


## Slab is Present to Resist all Sliding Forces

Check this box when a slab is in front of the wall to resist lateral sliding. This negates sliding concerns (but check the slab if necessary). For restrained wall footings, it deletes the lateral force (base stem reaction) applied to the top of the footing, puts "not applicable" in the sliding ratio display, and dims the sliding entries on the FOOTING > KEY DIMENSIONS AND SLIDING sub-tab screen. The slab restraint is assumed to be at the top of the footing and the program does not allow it to be placed higher-if this condition occurs, append your printout with hand-calcs,

## Use Toe Surcharge to Resist Sliding and Overturning

Checking this box will include the weight of soil overburden on the toe to resist overturning and add to its weight for frictional resistance.

## Use Heel Surcharge to Resist Sliding and Overturning

Checking this box will include heel surcharge. If surcharge is live load and its use would be non-conservative, don't check this box.

## Neglect Upward Pressure at Heel

For heel calculations you may choose to neglect the upward soil pressure, typically resulting in greater
heel moment. If this box is checked the Mu for upward loads will be zero.

## Toe Active Pressure Used

Checking this box will apply the toe side active pressure to reduce overturning moment and reduce sliding force to a net sliding force to be resisted.

## Choices for Use of Vertical Component of Active Pressure

The vertical component of the lateral pressure is applied at a vertical plane at the back of the footing. You can optionally use this to resist overturning, sliding, or for soil pressure calculations. (For the latter it can make a considerable difference). Checking these boxes applies the options. For a level backfill, this option will back-solve the EFP method to find the equivalent internal friction angle, then apply this vertical component equal to tan. If either the Rankine or Coulomb method had been chosen, this
vertical component would be tangent of
$\phi / 2$
Note that most texts suggest using the vertical component only to resist overturning. For a level backfill these options are usually not used.

## Loads / Vertical Loads Tab

Additional loads on the wall are entered on these sub-tabs.


## Surcharge Over Toe

If other loads are imposed directly above the toe (such as a slab, storage, or moving load), these may be entered here (you have already entered the height of the soil over toe). This surcharge is divided by soil density and multiplied by active pressure to calculate an equivalent lateral load. This surcharge is
used to calculate soil pressure. You can use this surcharge to resist sliding and overturning by clicking the box on the CRITERIA > Options sub-tab.

## Surcharge Over Heel

This surcharge is considered uniformly applied to the top surface of the retained soil (over the heel). It may be entered whether or not the ground surface is sloped, but is always taken as a vertical force. This surcharge is divided by the soil density and multiplied by the Active Pressure to create a uniform lateral load applied to the wall. You can use this surcharge to resist sliding and overturning by clicking the box on the CRITERIA > Options sub-tab.

## Axial Loads Applied to Top of Stem

These loads are considered uniform load along the length of the wall. They are applied to the top of the topmost stem section and effect the design of masonry stems only. The dead and live loads are used to calculate stem design values and factored soil reaction pressures used for footing design. Only the dead load is used to resist overturning and sliding of the retaining wall.

## Axial Load Eccentricity

This is the eccentricity of the axial load with respect to the centerline of the uppermost stem section. The eccentricity moves the load toward the toe, causing bending moments that are additive to those caused by the lateral soil pressure over the heel (negative eccentricities are not accepted).

## Adjacent Footing Load

This entry gives you the option of placing a footing adjacent and parallel to the back face of the wall, and have its effect on the wall included in both the vertical and horizontal forces on the wall and footing. Refer to the General Reference Diagram for locations where input measurements should be taken.

For a "Line Load" the load entered is the total load per foot parallel to the wall (not lbs. per sq. ft ).
If the adjacent footing is specified as "Square Footing" (not line load), the load entered should be the adjacent footing load divided by its dimension parallel to the wall, giving a pounds per lineal foot value, as for a continuous (line) footing.

A Boussinesq analysis is used to calculate the vertical and lateral pressures acting on the stem and footing. The program uses an assumed Poisson ratio of 0.3. (See Foundation Analysis and Design, 5th Edition, by J. E. Bowles, McGraw-Hill, pages 629-639)

Use of the Adjacent Footing may not be applicable if the horizontal distance from back face to stem to closest edge of adjacent footing is greater than the distance from top of wall footing to bottom of Adjacent Footing (i.e. outside an assumed line of influence).

When the Boussinesq analysis is used, the program may require additional computing time, depending upon the speed of your computer. To avoid this delay (which occurs any time any entry is changed) we suggest you use a vertical load of zero until your data entry is nearly finalized. Then enter the actual footing load and modify your final values.

Suggestion: For adjacent truck or highway loading, it may be preferable to use a heel surcharge (uniform) of 250 psf (or more) instead of treating it as an "adjacent footing."

Do not use this feature if the adjacent footing load is farther from the stem than the retained height, less the depth of the adjacent footing below the retained height, since at this distance it will not have significant effect on the wall.

## Footing Width

Width of the adjacent footing measured perpendicular to the wall. This is necessary to create a one-foot long by Width wide area over which the load is applied.

## Footing Eccentricity

This entry is provided in case the soil pressure under the adjacent footing is not uniform. Enter the
eccentricity of the resultant force under the adjacent footing from the centerline of the footing. Positive eccentricity is toward the toe, resulting in greater pressure at the side of the adjacent footing closest to the stem. The program will use the vertical load and eccentricity and create a trapezoidal pressure distribution under the adjacent footing for use with the Boussinesq analysis of vertical and lateral pressures.

## Wall to Footing Centerline Distance

Distance from the center of the adjacent footing to the back face of the stem at the retained height.

## Footing Type

This drop down menu selection allows you to enter either an isolated footing using the "Square Footing" selection, or a continuous footing using the "Line Load" selection.

## Base Above/Below Soil at Back of Wall

Use this entry to locate the bottom of the footing with respect to the Retained Height. Entering a negative number places the footing below the soil. A positive entry would typically only be used when the soil is sloped and the footing resides "uphill". To insert a negative number, first type the number then press the "-" (minus) sign.

Note: If the "Adjacent Footing" is another retaining wall at a higher elevation, the Boussinesq analysis may be used for the vertical load applied to the soil from the wall, however the design must also consider the lateral (sliding) loads from that adjacent wall. This load could be applied as "Added Lateral Load", however this is at the discretion of the designer and is not within the scope of the program. Caution is urged for this condition. See discussion in the companion book: Basics of Retaining Wall Design.

## Loads / Lateral Loads Tab



## Load @ Stem Above Soil

This load (typically a wind load) will be applied to that part of the stem projecting above the retained height defined by the entry "Wall height above retained soil." It is used to calculate overturning moment and shear, stem design moment and shear, and soil pressures. Customary values are 10 psf or higher. Only a positive " + " value can be entered (i.e., the force may only be applied in a direction to add overturning, in the direction of the active soil pressure).

## Added Lateral Load

This input allows you to specify an additional uniformly distributed lateral load applied to the stem. You can use it to apply a seismic load to the wall, an additional uniform lateral load due to soil pressure, or apply a short but intense load due to impact of a car or similar force (this case can be modeled by separating the "Height to Bottom" and "Height to Top" by just one foot, and using an "Added Lateral Load" equal to the total added force). This load is factored by 1.7 to calculate concrete moments and
shears．

## Height to Top

This dimension defines the upper limit of the added lateral load measured from the top of the footing． Do not enter a dimension higher than the top of the wall（＂retained height＂plus＂Wall height above retained soil＂）．

## Height to Bottom

This dimension defines the beginning（or bottom）of the added lateral load measured from the top of the footing．

## Stem Tab

Criteria Loads Stem	Stem Footing	Stability $\mid$ Description		
		$\mathrm{f}^{\prime} \mathrm{C}$	$\mathbf{3 , 0 0 0 . 0}$－${ }^{\text {a }}$ psi	
Material Conc	Concrete	Fy	$\mathbf{6 0 , 0 0 0 . 0}$－${ }^{\text {－}}$ psi	
Thickness ：Top $6.000 \frac{\text { 考 in }}{}$ Rebar Cover				
Ease $\mathbf{9 . 0}$	se 9.000 考 in		2.00 考 in	
Stem Design．．． H	（12）Height t2	（1）Height 勍 Stem Base		
，Ht．Above Footing 1.	$\underline{1.000 ~}$	0.00 ft		
Rebar Depth＇d＇	5.93 in	6.21 in	6.50 in	
Rebar Size \＃	$\#{ }^{6}$－	$\#$6 $\square$    632.000   巻 in   32.000$\frac{\text { 麦 in }}{}$		
Rebar Spacing 32.	32.000 麦 in			
Max．Req＇d Spacing	cing 18.00 in	18.00 in	18.00 in	
Mu：Actual	978.8 ft－\＃	1，366．4 ft－\＃	1，845．0ft－\＃	
Mn＊Phi：Allow．4，	4，281．5 ft－\＃	4，493．6 ft－\＃	4，705．8 ft－\＃	
Status－－－＞＞Ste	Stem OK	Stem OK	Stem OK	
Rebar Lap Req＇d	＇d $\quad 25.63 \mathrm{in}$	25.63 in	6.00 in	
Rebar Hook Develop Length into footing				
Shear＠Section	on 690.9 lbs	863.0 lbs	$1,054.3 \mathrm{lbs}$	
Vu：Actual	9.71 psi	11.57 psi	13.52 psi	
Vn＊Phi ：Allowable	able 93.11 psi	93.11 psi	93.11 psi	

## Wall Type

If tapered（battered）stem is selected，entry and data descriptions are described below．Taper can only apply to the inside face（the face against the soil）．

## Material

The default will be Concrete，since masonry cannot be tapered．

## Thickness：Top and Base

Enter the thickness at the bottom of the stem and at the top．

## f＇c and Fy

Enter concrete strength and rebar yield stress.

## Rebar Cover

Select the clearance you want. Against earth or exposed to weather and where formed, \#5 and smaller bars are $11 / 2^{\prime \prime}$ and 2 " for \#6 and larger (per ACI).

## Stem Design

You can select two heights above the base to check moments and shears. These are identified as "@ Height \#2" and "@ Height \#1." The latter is the lower, and the default height at the base is 0.00 ft .

## Ht. Above Footing

Select the two heights above the footing where rebar will be reduced for economy. Height \#2 is highest and height at stem base will be fixed at 0.00 . The $\# 1$ height should be at least the lap distance required above the stem top and base of the stem.

## Rebar Depth "d"

This will be computed based upon the heights you have chosen and the amount of wall taper. One-half inch will be automatically added to rebar clearance to determine "d".

## Rebar Size

Use the drop down menu to select \#3 through \#10 bar.

## Rebar Spacing

Use the above data as a guide, but you will not be able to enter a spacing greater than 18 inches, which is the ACI permitted maximum.

## Max. Allow. Spacing

This is the maximum permitted spacing, which per ACI is 18 inches.

## Actual Moment (Mu)

These are factored (by 1.7) moments at the heights you have selected.
Compare this value with Allowable Moment, indicated below, to verify adequacy of your design at the selected height location.

## Allowable Moment (Mn x )

This will be based upon the bar sizes and spacings you select.

## Status

This indicates whether your stem design is OK at the selected height or at the base or displays Mu > Phi Mn or As < min or As > max.

## Rebar Lap Splice Above / Below

This is the lap distance required above or below the Design Height. It is the development length multiplied by 1.3 (assuming a Class B splice) and without adjustment for stress level.

## Rebar Embed Length into Footing

This is the same as for the Cantilevered (non-tapered) stem, and assumes the bar is hooked into the footing with a 90 bend and minimum 12 db bar extension.

## Shear at Section

This is the total factored shear at the indicated height.

## Actual Shear

Unfactored shear stress at designated height computed by area = 12 "d".

## Allowable Shear

Based upon $0.852\left(f_{0}^{\prime}\right)^{1 / 2}$ for concrete.

## Footing Tab / Footing Dimensions

This is the screen where you design the footing, by manipulating the heel and toe widths so the actual soil pressure is less than allowable, or you can use the Automatic Footing Design button (described below) to size the footing. This screen also gives you choices for toe and heel reinforcing, or indicates if it is theoretically not required. It also suggests key reinforcing, if applicable.


## Toe Width

This is the width of the Toe of the footing, and is measured from the front edge of the footing to the front face of the stem. Can be set to 0.00 for a property line condition. All overturning and resisting moments are taken about the bottom-front edge of the toe.

## Heel Width

Distance from front face of stem to back of heel projection. If a dimension is entered that is less than the stem width at the base, the program will automatically reset the heel dimension to at least the stem width. For a property line at the rear face of the stem, this dimension would be the stem width.

## Total Footing Width

The calculated width of the footing, Toe Width + Heel Width.

## Footing Thickness

Total footing thickness, NOT including the key depth (if used). For bending and shear design of the footing, the rebar depth "d" is taken as Footing Depth - Rebar Cover - $1 / 2$ " (to account for the rebar radius). If footing thickness is inadequate for shear capacity a red warning indicator will appear.

The footing thickness must be greater than the rebar embedment length required for the bottom stem reinforcing + rebar cover. If you enter a dimension less than required for stem bar embedment, a red message will appear at the top of the screen. The program adds the calculated hooked bar embedment from the STEM screen and adds it to the rebar cover you have chosen for the bottom of the footing (usually 3 "). This will trigger the red warning. If inadequate thickness, increase the thickness, or change the stem dowels, until this message disappears.

## Center Stem on Footing

Clicking this bar will adjust the toe and heel widths you have entered so stem is centered on the footing but overall width remains the same.
$\mathbf{f}_{\mathrm{c}}^{\prime}$
Enter concrete compressive stress for footing.
Fy
Allowable rebar yields stress to be used for design of footing bending reinforcement.

## Rebar Cover in Heel/Toe

Distance from the face of concrete to edge of rebar. The program will add $1 / 2^{\prime \prime}$ to this value and subtract the result from the footing thickness to determine the bending "d" distance.

## Minimum As Rebar Ratio

Enter the absolute minimum steel percentage to be used to calculate rebar spacing requirements ( 0.0018 Ag for $\mathrm{Fy}=60,000 \mathrm{psi}$ ). If the \% steel required by stress analysis is less that $200 / \mathrm{Fy}$, the minimum of (200/Fy -or- 1.333 * bending percentage required) is calculated and compared with the Minimum As\% entered here, and the greater of the two used to calculate rebar spacing requirements.

## Rebar at Stem Base

This is a reminder of the size and spacing of the bottom stem reinforcing, to make it easier for you to select toe reinforcing to match (toe reinforcing is usually the bottom stem dowel bars bent toward the toe).

## Toe Reinforcing Options

This list gives you choices for reinforcing sizes and spacing for the bottom toe bars. Typically the toe bars are extensions of the stem dowels, which are bent out toward the toe. Therefore, you will probably want only to verify that the stem dowel bar size and spacing do not exceed the selections offered.

## Heel Reinforcing Options

This list gives you choices for acceptable sizes and spacing of top heel bars. It is desirable to select a spacing that is modular with the stem dowel bars for ease of construction. Note: The program does not calculate the heel bar development length inward from the back face of the stem (where the moment is maximum). You can refer to Appendix B for development lengths in concrete, which can be adjusted for the stress level in the heel bars. When detailing footing reinforcing it is important to consider and specify development lengths for both toe and heel bars.

## Rebar Selections

Use these three entries to pick your toe, heel, and if applicable, key reinforcing. The "Max @" message tells you the maximum spacing allowed for the bar selected.

## [Footing Width Automatic Design]

Clicking this button will cause the program to iterate footing widths until the soil pressure, overturning stability, and sliding stability ratios are acceptable. You can select either a fixed toe or heel distance, or balance the toe and heel dimensions. You can also select whether the resultant must be within the
middle third of the footing. After clicking "Design," the widths required will be displayed.
Automatic footing design is not available for Restrained Walls.

## Footing Tab / Key Dimensions and Sliding

This screen tells you whether passive soil resistance plus friction resistance is adequate to resist sliding with at least a 1.5 safety factor. If inadequate, you can design a key. If a key is used, the previous footing screen will check whether reinforcing is required by first checking the plain concrete flexural capacity (for computing section modulus, $3^{\prime \prime}$ is deducted from the key width per UBC '97). If the key depth to width ratio is less than about $2: 1$, it's usually adequate.


## Key Depth

Depth of the key below the bottom of footing. The bottom of the key is used as the lower horizontal plane for determining the size of the passive pressure block from the soil in front of the footing. Adjust this depth so the sliding safety factor is acceptable, but not less than 1.5. A depth greater than three feet or one-half the footing width is not recommended.

## Key Width

Width of the key, measured along the same direction as the footing width. This is usually 12 "-14", but generally not less than one-half the key depth so flexural stress in the key is adequate.

## Key Location

Enter the distance from the front edge of the toe to the beginning of the key. Do not enter a distance greater than the footing width minus key width.

## Align with Stem

Click this button to set front edge of key aligned with front of stem. If the key is then made the same width as the stem, the stem bars could extend down into the key to achieve development.

## Soil Over Toe to Neglect for Sliding Resistance

Since the soil over the toe of the footing is usually loose and uncompacted, it may have little or no passive resistance. This entry gives you the option of neglecting any or all of the Height of Soil Over Toe that you had entered in the CRITERIA screen. You can neglect the soil over toe plus the footing thickness, if desired.

## Footing/Soil Friction Factor

Enter this friction factor here, which is generally provided by the geotechnical engineer. It usually varies from 0.25 to 0.45 .

## \% Passive Usable for Sliding Resistance

This may be a stated restriction in the geotechnical report. Enter a value from zero to $100 \%$.

## \% Friction Usable for Sliding Resistance

This may be a stated restriction in the geotechnical report. Enter a value from zero to $100 \%$.

## Lateral Pressure @ Base of Footing

This is the total lateral force against the stem and footing which causes the wall to slide and which must be resisted. It is the total active pressure on the heel side less the active pressure on the toe side. The latter will be excluded if you choose to delete it on the OPTIONS screen.

## Less Passive Pressure Force

This uses the allowable passive pressure in pcf and the available depth (soil above toe less height to neglect plus footing thickness) to compute the total passive resistance, again multiplied by the percent usable you selected. Weight due to toe surcharge, if applicable, will also be added. If a key is used, the available passive pressure depth will be to the bottom of the key.

## Less Friction Force

This is the total vertical reaction multiplied by the friction factor, again multiplied by the percent usable you selected.

## Added Resisting Force Required

If this is 0.0 lbs ., the forces balance, but there may be no safety factor. Watch the Sliding Factor of Safety for an adequate value (usually 1.5). Add a key as required.

## Added Resisting Force Required for 1.5:1 Safety Factor

This is the additional force required to be resisted by a key to achieve a 1.5 safety factor. If zero, no key is required.

## Key Reinforcing

If flexural tension is insufficient to resist bending in key, a message will appear indicating reinforcing required. You can vary the width of the key until the message disappears. Or you can manually calculate reinforcing required.

## Sliding Factor of Safety

This gives you the ratio of passive and friction resistance to the total lateral force. This should be at least 1.5.

NOTE : If lateral restraint is provided by an abutting floor slab (by checking the box on the CRITERIA > OPTIONS screen), the sliding factor of safety displays will be deleted, but the "Lateral Force @ Base of Footing" will be displayed for checking restraint adequacy of the slab.

## Stability - Resisting Moments

This screen presents in tabular form each component contributing to resisting moment, giving weights and lever arms from the front edge of the toe to the centroid of the weight.


Resisting/Overturning ratio is displayed.
For calculating the vertical component, if checked on the OPTIONS screen, and if the EFP method was chosen, the program will back-solve using the Rankine formula to obtain an equivalent internal friction angle.

The force and moment displayed at the bottom accounts for deduction of effect of vertical component, if box on CRITERIA > OPTIONS box has been checked.

## Stability Tab / Overturning Moments

This screen presents in tabular form each component acting horizontally to overturn the wall/footing system. The centroid of each force is multiplied by its distance up from the bottom of the footing. The Heel Active Pressure includes the effect of surcharges and water table, if applicable, and its Distance is to the centroid of the total lateral force.


The total overturning moment is displayed, and the Resisting/Overturning ratio. The overturning moment is reduced by the toe side active pressure, if this option is selected on the Options screen.

## Results \& Graphics Tabs

This set of tabs provides the calculated values resulting from your input on the "Data Entry Tabs". Because a recalculation is performed with each data entry, the information on these tabs always reflects the accurate and current results, problem sketch, or stress/deflection diagram.

## Results Tab

Results	Construction	Wall Loading	
Soil Loading Results (Service load			
Soil Pressure @Toe			930.5 psf
Soil Pressure @Heel			193.7 psf
Allowable			1,500.0 psf
Total Bearing Load resultant ecc.			$2,108.0 \mathrm{lbs}$
Eccentricity within middle third			
Footing Results			
ACl Factored Pressure @ Toe			1,258.1 psf
ACl Factored Pressure @ Heel			261.9 psf
Mu:Design @Toe			1,029.7 ft-\#
Mu:Des	@ Heel		701.7 ft -\#
Heel moment OK using $\mathrm{M}<\mathrm{S}^{*} \mathrm{Fr}$			
One-Way Footing Shears...			
Shear @ Toe   Shear $\propto$ Heel   Allow. Footing Shear			11.790 psi
			$7.741 \mathrm{psi}$
			76.026 psi
Stability Ratios			
OTM Ra			$2.692: 1.00$
Sliding		1.627	: 1.00

## Soil Pressure @ Toe and Heel

This is the resulting unfactored soil pressure for both the toe and heel. If the eccentricity is outside the middle third, the heel pressure will show 0.00 . (Note: when the resultant is outside the middle-third, the program calculates the toe pressure assuming no "tension" at heel).

## Allowable Soil Pressure

This is for your reference as input on the Criteria input Screen

## Total Bearing Load

This is the sum of all vertical forces.

## Resultant Eccentricity

Distance from center of footing to resultant soil pressure.

## Eccentricity Within/Outside Middle Third

The resultant is outside the middle third of the footing width if the eccentricity is greater than one-sixth the footing width. (If outside the middle third, the program computes the toe soil pressure assuming no "tension" at heel.)

## ACI Factored Soil Pressure @ Toe and Heel

ACI or AASHTO load factors are applied to all dead and live loads to determine total vertical load for soil pressure used in calculating footing moments and shears. This load is then applied at the same eccentricity calculated for service load soil pressures to yield the actual factored soil pressures for footing design using ultimate strength design principles. Note that since only factored vertical loads are applied at the non-factored resultant eccentricity, a true 1.7 load factor applied to lateral earth pressure is not used for footing design. If resultant vertical load eccentricity were to be calculated
using factored loads, the distance would not truly represent a correct state of stress in the soil. ACI load factors are intended to give conservative results for stress. Calculation of a factored load eccentricity would give soil pressure diagrams that would not always represent the actual soil pressure distribution under the footing, and yield unreasonable results. Factored lateral earth pressure, however, is always used for concrete stem design.

## Mu Design @ Toe/Heel

These are the factored (by 1.4) moments at face of stem for toe and heel moments. Since neither can be greater than the stem base moment (factored if concrete stem), the latter may govern. These moments will be reduced if you choose to neglect the upward soil pressure on the Criteria > Options tab.

A message will indicate which controls.

## Shear @ Toe and Heel

The actual shear is calculated from the one-way action in the footing at a distance "d" (footing thickness - rebar cover) from the toe side of the bottom stem section, and at the face of the stem on the heel side. If "d" is greater than the projecting toe or heel length, then the one-way shear is zero.

## Allowable Footing Shear

The allowable unit shear equals $\left(0.85 * 2 * f_{\mathrm{c} 1 / 2}^{\prime}\right)$.

## Construction Sketch Tab

This tab provides a sketch of the beam with loads and resulting values shown. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Wall Loading Diagram Tab

This tab provides a sketch of the wall and it's applied loads. Using the [Print Sketch] button will print the sketch in large scale on a single sheet of paper.


## Sample Printout



