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Introduction 

This program provides analysis and design of arbitrarily shaped reinforced concrete columns loaded with 
axial loads and uni-axial or bi-axial bending moments.   The user may compute the capacity of a pre-
defined section or determine a design for pre-defined combinations of axial load and uni-axial or bi-axial 
bending moments.  The applied loads can be either compressive or tensile axial loads either working in 
conjunction with or without uni-axial or bi-axial bending moments.  Users may enter either service or 
ultimate load values for the axial loads and bending moments.  Where service loads are selected the 
program will scale user inputs by the appropriate ACI-318 load factors and compare the pre-defined 
cross-section capacity with each load combination. 
 
The computational method used within this module is based on the transformation of the double 
equilibrium integrals in the compression area to line integrals around the region’s perimeter by employing 
Green’s Theorem.  Provided the stress-strain relationship of the concrete model can be expressed in a 
line integral form, the method yields an exact mathematical solution.  In the case of the ACI-318 the 
stress-strain relationship of the concrete model is expressed in terms of a constant variable and therefore 
can be utilized in Green’s theorem. 
 
Assumptions 

The commonly accepted assumptions and limitations used in reinforced concrete design are stated 
below: 
 

1. Bernoulli’s assumption that plane sections remain plane before and after bending is valid. 
2. The strain in the concrete and the reinforcement is directly proportional to the distance from the 

neutral axis. 
3. Effects of creep and shrinkage can be ignored. 
4. Tensile strength of concrete is neglected. 
5. Member does not buckle before the ultimate load is attained. 
6. Column ties per ACI-318 are provided. 
7. The Whitney uniform stress block is used.  The maximum uniform rectangular stress is 0.85 fc’ 

and the depth of the stress block a = β1 c.  The value of β1 is interdependent upon the concrete 
compressive strength as defined in ACI-318: 

 
0.65 < β1 = 1.05 – 0.05 fc’ < 0.85  where fc’ is in ksi 
0.65 < β1 = 1.0643 – 0.007143 fc’ < 0.85 where fc’ is in MPa 

 
8. The maximum strain limit in the concrete is 0.0030 in./in. per the ACI-318 and Whitney stress 

block. 
9. The modulus of elasticity of concrete is computed as follows: 
 

Ec = 33 ω1.5 (fc’)1/2  where Ec and fc’ are in ksi and ω is in pcf 
Ec = 0.043 ω1.5 (fc’)1/2  where Ec and fc’ are in MPa and ω is in kg/m3 

 
10. Moments may be computed about either the geometric centroid (G.C.) of the cross-section 

(neglecting the steel reinforcement) or the plastic centroid (P.C.) of the cross-section.  The 
plastic centroid coordinate system can be determined when the section is in a “Plastic” state.  In 
other words, when all the steel has “Plastically Yielded” in compression and the entire concrete 
section is subjected to its maximum compressive stress.  The plastic state is only valid when used 
with an Elasto-Plastic steel model.  Therefore the effect of strain hardening and softening in the 
steel is ignored. 
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11. A perfect bond exists between concrete and steel to ensure equilibrium and compatibility of 
strains. 

12. Tensile and compressive stress-strain relationship of steel reinforcement is identical. 
13. Steel reinforcement is represented as a discrete point rather than a circular area.  Therefore the 

stress in the reinforcing bar is computed based on the strain at the centroid of the rebar. 
14. In the compression region, the concrete displaced by the actual area of the reinforcement is 

deducted from the Whitney stress block. 
 
Sign Convention 

In order for the user to understand the results of the program a sign convention must be specified and 
adhered to: 
 

1. Based on the right hand rule, for a plan view of the cross-section the positive X-axis will point to 
the right, the positive Y-axis will point to the top, and the positive Z-axis will point up and out of 
the plane. 

2. Positive net axial loads are compressive and negative net axial loads are tensile.  Compressive 
net axial loads act in the negative Z direction. 

3. With the axis and compressive and tensile axial directions defined the right hand rule applies as 
follows:  A positive moment about the x-axis (Mx) will produce compression (+) at the bottom 
face and tension (-) at the top face of the cross section.  A positive moment about the y-axis (My) 
will produce compression (+) at the right face and tension (-) at the left face of the cross-
section. 

4. Positive rotation is in the clockwise direction as shown in Figure 1. 

 
Figure 1.  Cross-Section rotated in Clockwise Rotation at 45° intervals. 

 
Therefore as the orientation of the neutral axis is rotated from 0° to 360° and the corresponding 
moments Mx and My will be as follows: 

Quadrant I      0° - 90°  -Mx, +My 
Quadrant IV   90° - 180° +Mx, +My 
Quadrant III 180° - 270° +Mx, -My 
Quadrant II 270° - 360°  -Mx, -My 
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Coordinate System 
 
For building codes the origin Oxy of the coordinate system may be chosen as either the geometric 
centroid (XG.C., YG.C.) or the plastic centroid (XP.C., YP.C.) dependent on the user’s preference.  The plastic 
centroid coordinate system can be determined when the section is in a “Plastic” state.  In other words, 
when all the steel has “Plastically Yielded” in compression (Elasto-Plastic Steel Model) and the entire 
concrete section is subjected to its maximum compressive stress (Wang & Salmon, 1998).  A “Plastic” 
state can only be achieved in a theoretical elasto-plastic model since steel has stress hardening and 
softening effects at large strains. 
 
The advantage in selecting the plastic-centroid for the origin of the coordinate system is that at the 
maximum axial compressive force, P0, the corresponding moment will be zero. 
 
The geometric centroid of the section is determined by computing the cross-sectional area of the polygon 
and its static moments about the X and Y axis initially prescribed by the user.  The origin of the geometric 
centroid (OG.C.) of the section is then determined by dividing the respective static moments by the cross-
sectional area: 

XG.C. = eXG.C. = Syc / Ac 
YG.C. = eyG.C. = Sxc / Ac 

 

If the contribution of the steel is added, the plastic-centroid of the section can be determined in a similar 
manner.  The cross-sectional area (As) of the transformed reinforcement and each bar’s respective static 
moment (Sxs, Sys) can also be calculated.  The origin of the plastic centroid (OP.C.) of the section is 
computed by dividing the combined static moments of the transformed steel and concrete contributions 
by the total area of the two materials: 
 

XP.C. = eXP.C. = [Syc + Sys] / [Ac + As] 
YP.C. = eyP.C. = [Sxc + Sxs] / [Ac + As] 

 
 
The initial concrete and steel coordinates of the cross section (Xoi, Yoi) can be transformed to the origin of 
the geometric centroid or plastic centroid by the following equations: 
 
Geometric Centroid:   Xi = Xoi – XG.C. 

Yi = Yoi – YG.C. 

 
Plastic Centroid:    Xi = Xoi – XP.C. 

Yi = Yoi – YP.C. 
 

The transformed coordinate system enables the rotation of the section about the geometric or plastic 
centroid: 
 

Xθi = Xi cos θ + Yi sin θ 
Yθi = -Xi sin θ + Yi cos θ 

 
The X-axis will remain parallel to the plane in which the neutral axis will be incremented within for each 
angular rotation, - θ.  The vertical location with respect to the centroid can thereby be determined for 
each neutral axis increment, c.  The intersection of the neutral axis with the polygonal sides of the cross-
section allows for the determination of the portions of the cross-section which lie within the compression 
or tension regions. 
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Moments of Inertia and Principal Axes 
 
Green’s theorem and the transformation of the double line integrals to a single line integral about the 
perimeter of the compression region can further be used to compute the second moments of inertia and 
the principal axes of the cross-section. 
 
The user is often interested in the second moments of inertia about the primary axes (Ixx, Iyy), the 
product of inertia (Ixy), and the section’s principal axes (θ1,2) and moments of inertia about them (I1, I2), 
respectively.  The calculation of the concrete cross-section’s second moments of inertia (Ixxc, Iyyc) and 
product of inertia (Ixyc) about the geometric centroid is given by the following formulae: 
 

Ixxc = ∫ y2 dA +A dy
2 

Iyyc = ∫ x2 dA +A dx
2 

Ixyc = ∫ xy dA +A dx
 dy 

 
The principal axes (θ1,2) and their corresponding moments of inertia about them (I1, I2) are calculated by 
the equations: 

θP = ½ TAN-1 [-2Ixyc / (Ixxc – Iyyc)] 
 

I1,2 = ½ (Ixxc + Iyyc) + [1/4 (Ixxc – Iyyc)2 + Ixyc
2]½ 

 
If the transformed sectional properties are of interest, the transformed steel contribution can be added.  
Generally the working stress method utilizes the modular ratio η = Es/Ec and the transformed steel area is 
computed as As (η – 1).  In the ultimate strength method the user seeks an equivalent (transformed) 
steel Area As that will give the same strength of the section.  Here the ratio of (fy / fc’ – 1) is used in lieu 
of (Es/Ec – 1).  The moment of inertia (Ixxs, Iyys, Ixys) contribution from the transformed steel 
reinforcement is given by: 
 

Ixxs = ∫ As y2 (fy / fc’ – 1) 
Iyys = ∫ As x2 (fy / fc’ – 1) 
Ixys = ∫ As x y (fy / fc’ – 1) 

 
Therefore the transformed section’s principal axes and corresponding moments of inertia are then: 
 
 

θPT = ½ TAN-1 [-2[Ixyc + Ixys]/ [(Ixxc + Ixxs) – (Iyyc+ Iyys)]] 
 

I1,2T = ½ [(Ixxc + Ixxs) + (Iyyc+ Iyys)] + [1/4 [(Ixxc + Ixxs) – (Iyyc+ Iyys)]2 + [Ixyc + Ixys]2]½ 
 
 
Elasto-Plastic Steel Model 

The ACI-318 uses the elasto-plastic stress-strain model.  The steel reinforcement behaves elastically with 
a slope equal to the modulus of elasticity, Es, up to a specified yield plateau.  The yield strain, εy, is 
defined as: 

εy = Fy / Es 
 
Fy is the stress value associated with the yield plateau of a typical ASTM tensile bar test.  The yield strain 
is the transition point beyond which the model behaves perfectly plastic with a constant stress value of fs 
= fy.  The elasto-plastic steel model used in the ACI-318 building code does not define a strain hardening 
or softening point or an ultimate strain of the reinforcement beyond which the bar breaks and the stress 
in the steel becomes zero, fs = 0.  These large strains at which the reinforcement could potentially fail are 
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generally uncommon in column design but should be evaluated by the user when analyzing large 
concrete cross-sectional models. 
 
Therefore, the elasto-plastic theoretical steel model has the following stress-strain relationships: 
 

fs = Es εs for 0 < εs < εy 
fs = Fy  for εs > εy 

 
Figure 2 illustrates the elasto-plastic stress-strain relationship for Grade 60 steel.  Note that no defined 
ultimate strain, εsu, appears in this steel model.  

Figure 2.  Elasto-Plastic Steel Model (Fy = 60 ksi, Es = 30,000 ksi) 

The user has the option of computing moments about the geometric centroid of the cross-section or 
about the plastic centroid of the cross-section. 
 
ACI-318 Concrete Model 
 
The ACI-318 concrete model is simplified with a rectangular stress block which can withstand a maximum 
compressive strain of εcu = 0.0030 in./in.  Figure 3 depicts the relationship of the Whitney stress block 
with a linear strain relationship.  At the maximum strain εcu = 0.0030 in./in. the maximum stress in the 
block is 0.85 fc’.  The depth of the stress block is defined as a = β1 c where c is the depth of the neutral 
axis. 

 
 

Figure 3.  ACI-318 Concrete Model Stress-Strain Relationship 
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The definition of the “Y” variables is measured from the either the geometric centroid or plastic centroid 
to the strained fiber represented by the appropriate subscript: 
 

Yi = strained fiber at level “i” 
Ymax = maximum compressive fiber 
Y0 = “zero” strain fiber in cross-section 

 
The other variables shown in the figure are defined as: 
 

εcu = ultimate concrete strain in maximum fiber 
β1 = Whitney block reduction coefficient for ACI-318 
fc´ = Concrete 28 day ultimate design compressive strength 
εi, σi = concrete stain and equivalent stress, respectively, at distance Yi 
c = depth of neutral axis 
a = effective compressive block depth for ACI-318 concrete model 

  
The “Whitney” coefficient, β1, is defined as: 
 

β1 = 0.85 fc’ <   4 ksi 
β1 = 1.05 – 0.05 fc’    4 ksi < fc’ < 8 ksi 
β1 = 0.65 fc’ >   8 ksi 

 
β1 = 0.85 fc’ <   30 MPa 
β1 = 1.0643 – 0.007143 fc’   30 MPa < fc’ < 58 MPa 
β1 = 0.65 fc’ >   58 MPa 

 
Figure 4 is a graphical representation of the reduction coefficient, β1, versus concrete strength, fc´.  The 
Whitney coefficient simply reduces the effective area over which the equivalent concrete compressive 
stress block acts. 

Figure 4.  Whitney Block Reduction Coefficient, β1. 
 

Incorporating these concrete model variables into a rectangular cross section example the stress-strain 
relationship and depiction of the variables appears below in Figure 5. 
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Figure 5.  ACI-318 Stress-Strain Relationship and Graphical Depiction of Variables 

Figures 6 through 8 illustrate the various common visual depictions of a rectangular reinforced concrete 
cross-section’s axial versus moment capacity diagrams.  Figure 6 shows the 3-dimensional surface of the 
theoretical relationship between the axial load and the bi-axial moments for a single quadrant of the 
diagram.  
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.  3-D Surface of Axial load versus Bending Moment Capacity. 

The isocline diagram shown in Figure 7 depicts the nominal axial load versus moment capacity at an 
arbitrarily selected angular rotation. 
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Figure 7.  Isocline – Axial Load versus Bending Moment. 

The isobar diagram shown in Figure 8 depicts the nominal moment Mx versus My for an arbitrarily 
selected axial load increment. 
 
 
 

 

 

 

 

 

 

 Figure 8.  Isobar – Bending Moments at Axial Load Increment. 
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ACI-318 – Rectangular Cross-Section Example 

θ = 45°, c = 27.46 in., fc' = 5,000 psi, β1 = 0.80, εcu = 0.0030 in./in., Ymax = 17.515 in., Y0 = -9.945 in 

Figure 9.  Rectangular Reinforced Concrete Section Example 

The concrete cross sectional coordinates and the cross-sectional properties about the geometric centroid 
can be computed as follows: 

Table 1.  Concrete Coordinates and Cross-Sectional Properties 
X 

(in.) 
Y 

(in.) 
Ac 

(in.2) 
Sxc 

(in.3) 
Syc 

(in.3) 
Ixx 

(in.4) 
Iyy 

(in.4) 
Ixy 

(in.4) 

1  0 0 0 0 0 0 0 0 

2  20 0 0 0 0 0 0 0 

3  20 30 600 9000 6000 180000 80000  90000 

4  0 30 0 0 0 0 0 0 

 600 9000 6000 180000 80000 90000 

 
Similarly the steel reinforcement transformed cross-sectional properties can be computed as follows: 

As = Asj (fy/fc’ – 1) 
Sxs = Asj ysj (fy/fc’ – 1) 
Sys = Asj xsj (fy/fc’ – 1) 

 
Table 2.  Steel Coordinates and Transformed Cross-Sectional Properties 

 Transformed Cross-Sectional Properties

 

X 
(in.) 

Y 
(in.) 

Bar 

# 

As 
(in.2) 

Fy 
(ksi) 

Es 
(ksi) 

Єy 
(in./in.) 

As 
(in.2) 

Sxs 
(in.3) 

Sys 
(in.3) 

1  4 4 10  1.27  60  30000  0.0020  13.97  55.88  55.88  

2  16 4 10  1.27  60  30000  0.0020  13.97  55.88  223.52 

3  16 26 10  1.27  60  30000  0.0020  13.97  363.22  223.52 

4  10 26 10  1.27  60  30000  0.0020  13.97  363.22  139.70 

5  4 26 10  1.27  60  30000  0.0020  13.97  363.22  55.88  

 69.85  1201.42  698.50 

Bars (5) #10 (1.27 in.^2) 
Fy = 60 ksi, Es = 30000 ksi 
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Therefore the plastic centroid location can be determined by the following equations: 
 

XP.C. = eXP.C. = [Syc + Sys] / [Ac + As] = 10.000 in. 
YP.C. = eyP.C. = [Sxc + Sxs] / [Ac + As] = 15.229 in. 

 
The section’s origin can now be located at the plastic centroid and the cross-section’s concrete and steel 
new coordinates relative to the plastic centroid can not be computed by the following equations: 

Xi = Xoi – XP.C. 
Yi = Yoi – YP.C. 

 
Table 3.  Concrete Coordinate Transformation to Plastic Centroid Origin 

XP.C. 

(in.) 
YP.C. 

(in.) 

1  -10 -15.229  

2  10 -15.229  

3  10 14.771  

4  -10  14.771  

 
Table 4.  Steel Coordinate Transformation to Plastic Centroid Origin 

XP.C. 

(in.) 
YP.C. 

(in.) 

1  -6 -11.229  

2  6 -11.229  

3  6 10.771  

4  0 10.771  

5  -6 10.771  

 

The transformed coordinate system enables the rotation of the orientation of the neutral axis about the 
plastic centroid origin by the following equations: 

Xθi = Xi cos θ + Yi sin θ 
Yθi = -Xi sin θ + Yi cos θ 

 
Table 5.  Concrete Coordinate Transformation to Angular Rotation 

Xθ 

(in.) 

Yθ 

(in.) 

1  3.698  -17.840  

2  17.840  -3.698  

3  -3.373  17.515  

4  -17.515  3.373  

 
Table 6.  Steel Coordinate Transformation to Angular Rotation 

Xθ 
(in.) 

Yθ 
(in.) 

1  3.698  -12.183  

2  12.183  -3.698  

3  -3.373  11.859  

4  -7.616  7.616  

5  -11.859  3.373  
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The depth of the compression region (a = β1 c = 0.80 x 27.46 in = 21.97 in.) creates the coordinates a = 
(17.085, -4.453) and b = (-9.690,-4.453) along the sides of the cross-section.  The ACI-318 stress block 
coefficients are A = 1, B = 0, and C = 0 and the contributions of each side of the concrete cross-section 
within the compression region can be computed as follows: 
 

Table 7.  Concrete Coordinates in Compression, Ji, A0, B0, Cc, Mxc, and Myc 

 Xθ 
(in.) 

Yθ 
(in.) J0 J1 J2 J3 J4 A0 B0 

Cc 
(kips) 

Mxc 
(in.-kip) 

Myc 
(in.-kip) 

Rectangular Compression Region (a-2-3-4-b) 
a 17.085  -4.453            
2 17.840  -3.698  0.75 -3.08 12.57 -51.52 211.74 21.54 1.00 56.02 228.13 489.18 
3 -3.373  17.515  21.21 146.56 1808.05 23483.45 329851.82 14.14 -1.00 652.12 -1124.58 4048.93 

4 -17.515  3.373  -14.14 -147.71 -1778.40 -23497.82 -
329626.19 -20.89 1.00 627.75 -5554.73 -3779.10 

b -9.690  -4.453  -7.83 4.22 -42.22 65.89 -437.36 -14.14 -1.00 452.42 74.38 -3161.89 
 1788.31 -6376.80 -2402.88 

 
Similarly the location of each reinforcing bar relative to the neutral axis can be determined along with the 
tensile or compressive strain and stress in each bar.  The contribution of each bar would thereby be as 
follows: 

Table 8.  Steel Coordinates, Strain, Stress, Force, Mxs, and Mys 

 Xθ 
(in.) 

Yθ 
(in.) Bar # As 

(in.2) 
Es 

(ksi) 
fy 

(ksi)
Єy 

(in./in.)
ЄS 

(in./in.)
σS 

(ksi) 
∆fc’ 
(ksi) 

Force 
(kips) 

Mxs 
(in.-kip) 

Mys 
(in.-kip) 

1  3.698  -12.183 10  1.27  30000 60 0.0020 -0.0002 -7.34  -9.32  -113.52  -34.45  

2  12.183  -3.698  10  1.27  30000 60 0.0020 0.0007 20.47 -4.25 24.16  89.34  294.34  

3  -3.373  11.859  10  1.27  30000 60 0.0020 0.0024 60.00 -4.25 70.80  -839.62  -238.84  

4  -7.616  7.616  10  1.27  30000 60 0.0020 0.0019 57.55 -4.25 67.92  -517.25  -517.25  

5  -11.859 3.373  10  1.27  30000 60 0.0020 0.0015 43.65 -4.25 51.51  -173.75  -610.81  

 205.07  -1554.80 -1107.01 

 
Transforming the moments to the original coordinate system and applying the ACI-318-02 reduction 
factors (φ = 0.65, θ = 1.0) to the triplet yields: 
 
Pn      = Pc + Ps 

         = 1788.31 + 205.07 
         = +1993.38 kips 
φ θ Pn = +1295.70 kips (Compression) 
 
Mnx    = (Mcx + Msx) cos (-θ) + (Mcy + Msy) sin (-θ) 
         = (-6376.80 + -1554.80) cos (- 45°) + (-2402.88 + -1107.01) sin (- 45°) = - 8090.35 in.-kip 
         = - 674.20 ft-kips 
φ Mnx  = - 438.23 ft-kips 
 
Mny     = -(Mcx + Msx) sin (-θ) + (Mcy + Msy) cos (-θ) 
          = - (-6376.80 + -1554.80) sin (- 45°) + (-2402.88 + -1107.01) cos (- 45°) = 3126.61 in.-kip 
          = 260.55 ft-kips 
φ Mny   = 169.36 ft-kips 


